已阅读5页,还剩156页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1绘图工具及用法 1 2制图标准的基本规定 1 3几何作图 第1章制图基本知识与技能 1 4平面图形的画法 图板用于铺放图纸 其表面要求平整 光洁 图板的左右侧为导边 必须平直 丁字尺用于绘制水平线 使用时将尺头内侧紧靠图板左侧导边上下移动 自左至右画水平线 三角板用于绘制各种方向的直线 其与丁字尺配合使用 可画垂直线以及与水平线成30 45 60 夹角的倾斜线 用两块三角板可以画与水平线成15 75 夹角的倾斜线 还可以画任意已知直线的平行线和垂直线 1 1绘图工具及用法 1 1 1图板 丁字尺 三角板 丁字尺的用法 丁字尺的尺头靠紧图板导边 上下移动画水平线 三角板的用法 三角板与丁字尺配合使用 可以画15 整数倍的各种角度 两块三角板配合使用 画已知直线的平行线和垂直线 1 1 2圆规与分规 画圆或圆弧 等分线段或量取尺寸 a 钢针与锅芯的放置 b 圆的画法 c 大圆的画法 分规主要用于量取尺寸和截取线段 1 1 3曲线板 用于画非圆曲线 除了上述工具外 绘图时还要准备有削铅笔的小刀 磨铅芯的砂纸 橡皮以及固定图纸的胶带纸 另外为了保护有用的图线可以使用擦图片等 用H和B代表铅芯的软硬度 1 H 表示硬性铅笔 色浅淡 H前边的数字越大 表示铅芯越硬 浅淡 2 B 表示软性铅笔 色浓黑 B前边的数字越大 表示铅芯越软 浓黑 3 HB 是中性铅 表示铅芯软硬适当 一般情况下 画底稿 用2H或3H描深图线 用B 2B或HB写字 用HB 1 1 4铅笔 画底稿和描深图线 1 2 1图纸幅面和格式 GB T14689 1993 1 图纸基本幅面 A0 A4 表1 1图纸基本幅面尺寸 1 2制图标准的基本规定 各号幅面的尺寸关系是 沿上一号幅面的长边对裁 即为次一号幅面的大小 2 图框格式图框 图纸上限定绘图区域的线框 a A0 A3横式幅面 b A4立式幅面 3 标题栏 GB T10610 1 1989 位于图纸右下角与图框线相接 用来填写图名 制图人名 设计单位 图纸编号 比例等内容 图1 11制图作业标题栏格式 表1 2国标规定的比例 1 2 2比例 GB T14690 1993 是图中图形与其实物相应要素的线性尺寸之比 线性尺寸是指能用直线表达的尺寸 如直线的长度 圆的直径等 1 2 3字体 GB T14691 1993 1 汉字 长仿宋体 国家正式公布的简化字 宽约为高的2 3 2 数字和字母 图样上的数字有阿拉伯数字和罗马数字 字母有拉丁字母与希腊字母 0123456789 ABCDEFGHIJKLabcdefghijklmnopqrstuvwxyz 表1 3图线 1 2 4图线 GB T17450 1998 1 图线型式及应用 图1 14图线应用示例 1 同一图样中 同类图线的宽度应基本一致 虚线 点画线及双点画线的线段长度和间隔应各自大致相等 2 相互平行的图线 其间隙不宜小于其中粗线的宽度 且不宜小于0 7mm 3 绘制图形的对称中心线 轴线时 其点画线应超出图形轮廓线外3mm 5mm 且点画线的首末两端是长划 而不是短划 用点画线绘制圆的对称中心线时 圆心应为线段的交点 4 在较小的图形上绘制点画线 双点画线有困难时 可用细实线代替 5 虚线 点画线 双点画线自身相交或与其他任何图线相交时 都应是线 线相交 而不应在空隙处或短划处相交 但虚线如果是实线的延长线时 则在连接虚线端处留有空隙 6 图线不得与文字 数字或符号重叠 混淆 当不可避免时 应首先保证文字等的清晰 如图1 16所示 2 图线的画法 注意事项 图1 16图线的画法 1 2 5尺寸标注 1 正确 符合 国标 2 完整 齐全 不得遗漏 3 清晰 注在图形的明显处 且布局整齐 4 合理 既要保证设计要求 又要适合施工 维修等生产要求 尺寸用来确定图形所表达物体的实际大小 标注时要求做到 图1 17尺寸的组成与标注示例 1 尺寸界线 细实线 用来表示尺寸的度量范围 用细实线绘制 并可用图形的轮廓线 轴线或对称中心线代替 2 尺寸线 表示所注尺寸的度量方向和长度 用细实线绘制 不能用其他线代替或与其他线重合 3 尺寸起止符号 尺寸线终端 尺寸的起止点 有箭头和45 短划两种 标注直径 半径 角度是一般用箭头 4 尺寸数字 表示尺寸的大小 尺寸数字一般写在尺寸线的上方 左方或尺寸线的中断处 1 尺寸的组成 图1 18尺寸起止符号的画法 图1 19尺寸数字的注写方向 标注半径 直径和角度尺寸时 尺寸起止符号一般用箭头表示 且应在半径 直径的尺寸数字前分别加注符号R 圆球的半径与直径数字前还应再加注符号S 角度的尺寸界线应沿径向引出 尺寸线画成圆弧 圆心是角的顶点 尺寸数字应一律水平书写 2 半径 直径和角度尺寸的标注 图1 19尺寸数字的注写方向 3 坡度的标注 a 百分数与比数形式 b 直角三角形形式 1 3 1等分及作正多边形 1 任意等分线段 以五等分为例 1 3几何作图 线段的五等分 2 作正多边形 用已知半径的圆弧光滑连接 即相切 两已知线段 或圆弧 称为圆弧连接 起连接作用的圆弧称为连接弧 切点称为连接点 由于连接弧的半径和被连接的两线段已知 所以 圆弧连接的关键是确定连接弧的圆心和连接点 1 圆弧连接的作图原理 1 3 3圆弧连接 a 圆弧与直线相切 b 圆弧与圆弧外切 c 圆弧与圆弧内切 1 两直线间的圆弧连接 a 已知条件 b 作图方法和步骤 1 求连接弧圆心O 2 求连接点 切点 3 画连接弧并描粗 2 圆弧连接的三种形式 2 圆弧连接两已知圆弧 b 作图方法和步骤 1 求连接弧圆心O 2 求连接点 切点 3 画连接弧并描粗 1 外连接 外切 已知条件 两已知弧的圆心01 02 半径R1 R2 连接弧的半径R 2 圆弧连接两已知圆弧 b 作图方法和步骤 2 内连接 内切 3 画连接弧并描粗 1 求连接弧圆心O 2 求连接点 切点 已知条件 两已知弧的圆心01 02 半径R1 R2 连接弧的半径R b 作图方法和步骤 3 混合连接 内外切 2 圆弧连接两已知圆弧 已知条件 两已知弧的圆心01 02 半径R1 R2 连接弧的半径R 1 求连接弧圆心O 2 求连接点 切点 3 画连接弧并描粗 3 圆弧连接已知直线和圆弧 综合连接 b 作图方法和步骤 已知条件 已知弧的圆心01 半径R1 连接弧的半径R及直线MN 1 求连接弧圆心O 2 求连接点 切点 3 画连接弧并描粗 1 尺寸分析平面图形中的尺寸按其作用分为两类 1 定形尺寸 确定各组成部分的形状和大小的尺寸 2 定位尺寸 确定各组成部分之间相对位置的尺寸 尺寸基准 标注尺寸的起点 注 在平面图形中 水平与竖直方向各有一个主要基准 通常选取图形的对称线 圆的中心线 重要端线等作为尺寸基准 1 4 1平面图形的分析 1 4平面图形画法 2 线段分析平面图形中的线段按其尺寸是否完整 可分为三类 1 已知线段 尺寸完整 有定形 定位尺寸 能直接画出的线段 2 中间线段 有定形尺寸 但定位尺寸不齐全 必须依赖附加的一个几何条件才能画出的线段 3 连接线段 只有定形尺寸 而没有定位尺寸的线段 1 绘图前的准备工作 准备好圆规 铅笔 橡皮等绘图工具和用品 将图纸用胶带纸固定在图板的左下方 图纸下方留足放置丁字尺的位置 2 选比例 定图幅 画图框及标题栏 根据平面图形的尺寸大小和复杂程度 选择比例并定出图幅的大小 按国家标准规定的幅面尺寸和标题栏位置 绘制图框和标题栏 3 分析图形 绘制底稿 通过尺寸分析与线段分析 确定作图的基准线和绘图顺序 对每一图形应先画基准线 再画主要轮廓线及细部 另外还需在打底稿阶段就划出尺寸界线和尺寸线 4 检查加深 在加深前必须对底稿作仔细检查 改正 直至确认无误 用铅笔加深的顺序是 自上而下 自左至右依次画出同一线宽的图线 先画曲线后画直线 对于同心圆宜先画小圆后画大圆 画圆时 圆规的铅芯应比画相应直线的铅芯软一号 5 标注尺寸 按制图标准的要求画尺寸起止符号 填写尺寸数字 标出所有的定形尺寸和定位尺寸 完成全图 6 填写标题栏 经仔细检查图纸后 填写标题栏中的各项内容 完成全部绘图工作 1 4 2平面图形的作图步骤 图1 24绘制平面图形的方法与步骤 第2章正投影基础 2 1投影基本知识2 1 1投影的概念2 1 2投影法的分类1 中心投影法2 平行投影法 1 斜投影法 2 正投影法2 1 3正投影的基本性质1 显实性2 积聚性3 类似性 在灯光或日光的照射下 形体在地面或墙面上会产生的影子 2 1 1投影的概念 这里的灯光或日光称为投影中心 光线称为投射线 地面或墙面称为投影面 这种得到形体的投影方法 称为投影法 2 1 2投影的分类 图2 3中心投影图2 4斜投影图2 5正投影 1 显实性 若线段和平面图形平行于投影面 其投影反映实长或实形 2 积聚性 若线段和平面图形垂直于投影面 其投影积聚为一点或一直线段 3 类似性 若线段和平面图形倾斜于投影面 其投影短于实长或小于实形 但与空间图形类似 2 2 1三面投影图的形成1 三投影面体系2 形体在三投影面体系中的投影3 三投影面的展开2 2 2三面投影图的投影规律1 投影规律2 视图与形体的方位关系 2 2形体的三面投影图 问题的提出 b 水平投影图 形体的一面投影不能唯一确定其空间形状 2 2 1三面投影图的形成1 三投影面体系 由三个互相垂直的投影面组成 1 投影面正立投影面 V 正面 水平投影面 H 水平面 侧立投影面 W 侧面 2 投影轴OX轴 V HOY轴 H WOZ轴 V W 3 原点O 原点 Z Y W 三面投影图 三视图 正立面投影图 正面图 主视图水平面投影图 平面图 俯视图侧立面投影图 侧面图 左视图 2 形体在三投影面体系中的投影 将形体放置在三投影面体系中 按正投影法向各投影面投影 则形成了形体的三面投影图 3 三面投影图的展开 规定正面V不动 将水平面H绕OX轴向下旋转90 侧面W绕OZ轴向右旋转90 就得到如下图所示的在同一平面上的三个视图 2 2 2三面投影图的投影规律 1 三面投影图的基本规律 三等关系 正面图与平面图长对正 正面图与侧面图高平齐 平面图与侧面图宽相等 正面图反映形体的上 下和左 右 不反映前 后 平面图反映形体的前 后和左 右 不反映上 下 侧面图反映形体的上 下和前 后 不反映左 右 2 视图与形体的方位关系 2 3 1点的三面投影1 点三面投影的形成2 点的投影规律 特性 2 3 2点的空间坐标2 3 3特殊位置的点2 3 4两点的相对位置1 两点的相对位置2 重影点及可见性判别 2 3点的投影 2 3 1点的三面投影 1 点三面投影的形成 A点的水平投影 aA点的正面投影 a A点的侧面投影 a A 分析 a az aay xa ax a ay za az aax y 2 点的投影规律 特性 a a ox 长对正 a a oz 高平齐 a az aax 宽相等 A 例题2 1 已知点B的正面与侧面投影 求点B的水平投影 2 3 2点的空间坐标 1 点的空间位置可用直角坐标表示 X坐标 A点到W面的距离Aa Y坐标 A点到V面的距离Aa Z坐标 A点到H面的距离Aa2 书写形式为A X Y Z A 2 3 3特殊位置的点 位于投影面 投影轴以及原点上的点 2 3 4两点的相对位置 X坐标确定左右 大者在左 Y坐标确定前后 大者在前 Z坐标确定上下 大者在上 1 两点的相对位置 2 重影点及可见性判别 重影点 若两点位于同一条垂直某投影面的投射线上 则这两点在该投影面上的投影重合 这两点称为该投影面的重影点 2 3 5点直观图的画法 为了便于建立空间概念 加深对投影原理的理解 常常需要画出具有立体感的直观图 根据点的投影 画其直观图的方法步骤见例2 2 例2 2 已知A 28 0 20 B 24 12 12 C 24 24 12 D 0 0 28 四点 试画出其直观图与投影图 a 直观图 b 投影图 2 4 1各种位置直线的三面投影2 4 2直线上点的投影2 4 3一般位置直线的实长及其与投影面的夹角 2 4直线的投影 直线的投影 直线上任意两点同面投影的连线 直线的投影仍为直线 特殊情况下为一点 2 4直线的投影 2 4 1各种位置直线的三面投影 1 投影面平行线 与一个投影面平行 而与另两个倾斜的直线 1 水平线 与H面平行 与V W面倾斜 2 正平线 与V面平行 与H W面倾斜 3 侧平线 与W面平行 与V H面倾斜 2 投影面垂直线 与一个投影面垂直 必与另两个平行 的直线 1 铅垂线 与H面垂直 与V W面平行 2 正垂线 与V面垂直 与H W面平行 3 侧垂线 与W面垂直 与V H面平行 3 一般位置直线 与三个投影面都倾斜的直线 1 水平线 投影特性 1 ab AB2 a b OX a b OYW3 反映 角的真实大小 2 正平线 投影特性 1 a b AB2 ab OX a b OZ3 反映 角的真实大小 3 侧平线 投影特性 1 a b AB2 a b OZ ab OYH3 反映 角的真实大小 投影特性 1 ab积聚成一点2 a b OX a b OY3 a b a b AB 1 铅垂线 2 正垂线 投影特性 1 a b 积聚成一点2 ab OX a b OZ3 ab a b AB 3 侧垂线 投影特性 1 a b 积聚成一点2 ab OYH a b OZ3 ab a b AB 3 一般位置直线 投影特性 1 ab a b a b 均小于实长2 ab a b a b 均倾斜于投影轴3 不反映 实角 直线上的点具有两个特性 1 从属性若点在直线上 则点的各个投影必在直线的各同面投影上 利用这一特性可以在直线上找点 或判断已知点是否在直线上 2 定比性属于线段上的点分割线段之比等于其投影之比 即AC CB ac cb a c c b a c c b 利用这一特性 在不作侧面投影的情况下 可以在侧平线上找点或判断已知点是否在侧平线上 2 4 2直线上点的投影 例题2 3 已知线段AB的投影图 试将AB分成2 1两段 求分点C的投影 求解一般位置线段的实长及倾角是求解画法几何综合题时经常遇到的基本问题之一 而用直角三角形法求解实长 倾角又最为方便简捷 2 4 3一般位置线段的实长及其与投影面的夹角 a 直观图 b 利用水平投影求实长 c 利用正面投影求实长 例题2 4 已知线段AB的水平投影ab和点B的正面投影b 如图2 23 a 所示 线段AB与H面的夹角 30 求出线段AB的正面投影a b a 已知条件 b 作图方法 例题2 5 已知线段AB的投影 如图2 24 a 所示 试定出属于线段AB的点C的投影 使BC的实长等于已知长度L a 已知条件 b 作图方法 2 5 1平面的表示法2 5 2各种位置平面的投影特性2 5 3平面上点和直线的投影 2 5平面的投影 2 5 1平面的表示法 1 用几何元素表示平面用几何元素表示平面有五种形式 1 不在一直线上的三个点 2 一直线和直线外一点 3 平行二直线 4 相交二直线 5 任意平面图形 2 平面的迹线表示法平面可以理解为是无限广阔的 这样的平面必然会与投影面产生交线 平面与投影面的交线 称为迹线 1 用几何元素表示平面 平面图形的投影 组成该平面图形的各线段同面投影的集合 2 平面的迹线表示法 a 直观图 b 投影图 2 5 2各种位置平面的三面投影 1 投影面的平行面 与一个投影面平行 必与另两个垂直 的平面 1 水平面 与H面平行 与V W面垂直 2 正平面 与V面平行 与H W面垂直 3 侧平面 与W面平行 与V H面垂直 2 投影面的垂直面 与一个投影面垂直 而与另两个倾斜的平面 1 铅垂面 与H面垂直 与V W面倾斜 2 正垂面 与V面垂直 与H W面倾斜 3 侧垂面 与W面垂直 与V H面倾斜 3 一般位置平面 与三个投影面都倾斜的平面 1 水平面 投影特性 一框两线 1 水平投影abc反映 ABC实形2 a b c a b c 分别积聚为一条线 2 正平面 投影特性 一框两线 1 正面投影a b c 反映 ABC实形2 abc a b c 分别积聚为一条线 投影特性 一框两线 1 侧面投影a b c 反映 ABC实形2 abc a b c 分别积聚为一条线 3 侧平面 1 铅垂面 投影特性 一线两框 1 水平投影abc积聚为一条线2 a b c a b c 为 ABC的类似形3 abc与OX OY的夹角反映 角的真实大小 2 正垂面 投影特性 一线两框 1 正面投影a b c 积聚为一条线2 abc a b c 为 ABC的类似形3 a b c 与OX OZ的夹角反映 角的真实大小 3 侧垂面 投影特性 一线两框 1 侧面投影a b c 积聚为一条线2 abc a b c 为 ABC的类似形3 a b c 与OZ OY的夹角反映 角的真实大小 3 一般位置平面 投影特性 三框 1 abc a b c a b c 均为 ABC的类似形2 不反映 的真实角度 2 5 3平面上点和直线的投影 1 平面上的直线2 平面上的点3 平面上的投影面平行线 1 平面上的直线 直线在平面上的几何条件是 通过平面上的两点 通过平面上的一点且平行于平面上的一条直线 2 平面上的点 点在平面上的几何条件是 点在平面内的某一直线上 在平面上取点 直线的作图 实质上就是在平面内作辅助线的问题 利用在平面上取点 直线的作图 可以解决三类问题 判别已知点 线是否属于已知平面 完成已知平面上的点和直线的投影 完成多边形的投影 3 平面上的投影面平行线 平面上投影面平行线 既在平面上又平行于投影面的直线 在一个平面上对V H W投影面分别有三组投影面平行线 平面上的投影面平行线既具有投影面平行线的投影性质 又与所属平面保持从属关系 属于平面的水平线和正平线在平面上作正平线和水平线 平面上的水平线和正平线 PV PH 在平面上作正平线和水平线 例题2 6 已知三角形ABC的两面投影 如图2 29 a 所示 在三角形ABC平面上取一点K 使K点在A点之下15mm 在A点之前13mm 试求K点的两面投影 a 已知条件 b 作图方法 第3章基本体的投影 3 2曲面体的投影 3 3求立体表面上点 线的投影 3 1平面体的投影 视图特征 1 反映底面实形的视图为多边形 2 另两视图均为由实线或虚线组成的矩形 3 1 1棱柱 直棱柱 侧棱与底面垂直 斜棱柱 侧棱与底面倾斜 正棱柱 底面为正多边形的直棱柱 3 1平面体的投影 六棱柱的投影图 图3 34种工程形体的投影 视图特征 1 反映底面实形的视图为多边形 三角形的组合图形 2 另两视图均为三角形 3 1 2棱锥 正棱锥 底面为正多边形 顶点过底面中心垂线的棱锥体 三棱锥的投影图 视图特征 1 反映底面实形的视图为两个相似多边形和反映侧面的几个梯形 2 另两视图均为梯形 或梯形的组合图形 3 1 3棱台 棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形成的形体 上 下底面为各对应边相互平行的相似多边形 侧面为梯形 常见的曲面体多是回转体 如圆柱 圆锥 圆球 圆环等 回转面 有一条母线 直线或曲线 绕固定轴线回转而成的曲面 素线 在回转面上每一个位置的母线 回转体 由回转面或回转面与平面所围成的体 3 2曲面体的投影 圆柱由圆柱面和两个底面所围成 圆柱可看作是由一个矩形平面绕着它的一条边回转而成 圆柱面可看作由直线绕与它相平行的轴线旋转而成 3 2 1圆柱 视图特征 1 反映底面实形的视图为圆 2 另两视图均为矩形 分析圆柱轮廓素线的投影 轮廓素线 构成圆柱面投影的轮廓线 对某投影面的可见与不可见部分的分界线 回转面上外形轮廓线 圆锥可看作是由一个直角三角形绕其直角边回转而成 圆锥由圆锥面 底面所围成 圆锥面可看作由直线绕与它相交的轴线旋转而成 3 2 2圆锥 视图特征 1 反映底面实形的视图为圆 2 另两视图均为等腰三角形 3 2 3圆台 圆锥被垂直于轴线的平面截去锥顶部分 剩余部分称为圆台 其上下底面为半径不同的圆面 视图特征 1 与轴线垂直的投影面上的投影为两个同心圆 2 另两视图均为等腰梯形 3 2 4圆球 圆球可看成是由一个圆面绕其任一直径回转而成 圆球是由球面围成的 球面可看作圆绕其直径为轴线旋转而成 视图特征 三个视图均为圆 不完整球体的三视图 其外形轮廓都有半径相等的圆弧 3 3求立体表面上点 线的投影 1 位于棱线或边线上的点 线上定点法 当点位于立体表面的某条棱线或边线上时 可利用线上点的 从属性 直接在线的投影上定点 这种方法即为线上定点法 亦可称为从属性法 2 位于特殊位置平面上的点 积聚性法 当点位于立体表面的特殊位置平面上时 可利用该平面的积聚性 直接求得点的另外两个投影 这种方法称为积聚性法 3 位于一般位置平面上的点 辅助线法 当点位于立体表面的一般位置平面上时 因所在平面无积聚性 不能直接求得点的投影 而必须先在一般位置平面上做辅助线 辅助线可以是一般位置直线或特殊位置直线 求出辅助线的投影 然后再在其上定点 这种方法称为辅助线法 3 3 1平面立体上点和直线的投影 例3 1 如图所示 M N分别是立体表面上的两个点 已知M点的正面投影m N点的水平投影n 试求点M N的另外两面投影 例3 2 如图所示 已知立体表面上直线MK的正面投影m k 试作直线MK的水平投影mk和侧面投影m k a 已知条件 b 作图方法 例3 3 如图所示 已知立体表面点K的正面投影k 试求其水平与侧面投影k k a 已知条件 b 一般位置直线作为辅助线 c 特殊位置直线作为辅助线求k点的投影求k点的投影 3 3求立体表面上点 线的投影 1 线上定点法 从属性法 当点或线位于曲面立体的轮廓素线上时 可利用 线上定点 从属性 法 求解 2 积聚性法 当点或线所在的立体表面有积聚性时 可利用 积聚性法 求解 3 辅助素线或辅助纬圆法 当点或线所在的曲面立体表面无积聚性时 则必须利用 辅助线法 求解 如位于圆锥 圆台 的锥面上的点或线 可利用辅助素线或辅助纬圆法 而位于圆球的球面上的点或线可利用辅助纬圆法 3 3 2曲面立体上点和直线的投影 例3 4 如图所示 已知立体表面上的点K的正面投影k 求其另外两面的投影k k a 已知条件 b 作图方法 例3 5 如图所示 已知圆柱表面上线段AB的正面投影a b 求其另外两面上的投影 a 已知条件 b 作图方法 例3 6 如图所示 已知圆锥上点K的正面投影k 求其另两面上的投影 a 已知条件 b 作图方法 第4章建筑形体的表面交线 4 1概述 4 2切割型建筑形体 4 3相交型建筑形体 4 1概述 1 截交线平面与形体相交产生的表面交线称为截交线 切割形体的平面称为截平面 截交线所围成的平面图形称为截断面 形体被平面截断后的部分称为截切体 截交线是截平面与形体表面的共有线 并且是封闭的平面折线或平面曲线 2 相贯线相交形体形成的表面交线称为相贯线 相交的形体称为相贯体 按相贯体表面性质不同 可分为三种情况 1 两平面体相贯 2 平面体与曲面体相贯 3 两曲面体相贯 相贯线是两形体表面的共有线 一般情况下 相贯线是封闭的空间折线或空间曲线 a 两平面体相贯 b 平面体与曲面体相贯 c 两曲面体相贯 4 2切割型建筑形体 4 2 1平面体的截交线1 平面切割棱柱体2 平面切割棱锥体4 2 2曲面体的截交线1 圆柱体的截交线2 圆锥体的截交线3 圆球体的截交线 4 2 1平面体的截交线 由于平面体是由平面围成 所以平面体的截交线是封闭的平面折线 即平面多边形 求平面立体截交线的步骤 1 分析截交线形状及投影形状 2 求点利用截平面的积聚性求棱线与截平面的交点 3 连线按一定顺序并根据可见性连线 平面多边形 1 平面切割四棱锥由于截平面P是正垂面 所以截交线的正面投影积聚成直线 水平投影和侧面投影都是四边形 类似形 只要求得四棱锥的四条棱线与截平面的交点 依次连接即可完成作图 如图所示 a 直观图 b 截交线的求法 2 平面切割四棱柱截平面P与四棱柱的4个棱面及上底面相交 截交线是五边形 如图所示 a 直观图 b 截交线的求法 4 2 2曲面体的截交线 平面与曲面立体相交 其截交线在一般情况下是平面曲线或平面曲线与直线段的组合图形 当截平面为特殊位置平面时 其投影至少有一个必具有积聚性 平面曲线 平面截圆柱时 由于截平面与圆柱的轴线相对位置不同 其截交线有三种不同的形状 1 截平面与轴线平行 矩形 2 截平面与轴线垂直 圆 3 截平面与轴线倾斜 椭圆 1 平面与圆柱相交 定点法 a 直观图 b 求特殊点 c 求中间点 斜截圆柱其截交线的画法分析 由于截平面P是正垂面 所以椭圆的正面投影积聚在P 上 水平投影与圆柱面的水平投影重合为圆 侧面投影为椭圆 2 圆锥体的截交线 平面截切圆锥时 由于截平面与圆锥轴线相对位置的不同 其截交线有五种不同的形状 圆锥被正平面切割后形成的截交线分析 由于截平面为正平面 所以截交线的水平投影积聚为直线 可由截交线的水平投影用辅助纬圆法或辅助素线法求作正面投影 3 平面与圆球相交 圆 平面与圆球相交形成的截交线分析 当截平面平行于投影面时 截交线在该投影面上的投影反映其真实大小的圆 另外两投影分别积聚成直线 4 3相交型建筑形体 4 3 1两平面体的表面交线4 3 2平面体与曲面体的表面交线4 3 3两曲面体的表面交线4 3 4两曲面形体表面交线的特殊情况 1 两平面体的表面交线 如图所示为烟囱与坡屋面相交的形体 其形体可看成是由四棱柱与五棱柱相贯 相贯线是封闭的空间折线 折线的每一段分别属于两立体侧面的交线 折线上每个顶点都是一形体上的棱线与另一形体侧面的交点 因此 求两平面体的相贯线实际上是求两平面的交线或直线与平面的交点 例4 1 如图所示 求作高低房屋相交的表面交线 2 平面体与曲面体的表面交线 平面体与曲面体相交 其交线是由几段平面曲线组成的空间曲线 例4 2 如图4 11所示 求作圆锥形薄壳基础的表面交线 a 求特殊点 b 求一般点 3 两曲面体的表面交线 两曲面体表面的相贯线 一般是空间曲线 特殊情况下可能是平面曲线或直线 相贯线上的每个点都是两形体表面的共有点 因此 求作两曲面体的相贯线时 通常是先求出一系列共有点 然后依次光滑连接相邻各点 a 直观图 b 求特殊点 c 求一般点 4 两曲面形体表面交线的特殊情况 1 具有同轴的回转体相交时 其表面交线为垂直于该轴线的圆 2 两个回转曲面相交且公切圆球时 其表面交线为平面曲线 椭圆 3 当两圆柱面的轴线平行或两圆锥面共锥顶时 表面交线为直线 即素线 建筑工程上常用的十字拱屋面 就是由两等径圆柱面正交所构成 如左下图所示 此外 两回转曲面相交还用于管道连接等 如右下图所示 第5章组合体的投影 5 1概述 5 2组合体投影图的画法 5 3组合体投影图的尺寸标注 5 4组合体投影图的读法 5 1概述 组合体是由两个或两个以上基本体组合而成的形体 组合体按其组合形式可分为叠加式 切割式 综合式三种 a 涵洞口 b 灯柱头 组合体中各基本体之间的表面连接关系 有以下四种情况 1 平齐 当相邻两基本体的表面平齐 共面 时 相接处不应画分界线 2 不平齐 当相邻两基本体的表面不平齐 不共面 时 相接处应画分界线 3 相切 当相邻两基本体的表面相切时 相切处不画线 4 相交 当相邻两基本体的表面相交时 相交处应画出交线 2 表面交线的分析 3 形体分析法为了正确而迅速地绘图 标尺寸和读图 假想把组合体分解成若干个基本体 分析各基本体的形状 它们之间的相对位置 组合型式和表面连接关系 这种思考和分析问题的方法称为形体分析法 组合体相邻表面的连接方式 平齐 相交 相切 不平齐 5 2组合体投影图的画法 5 2 1作图步骤1 形体分析2 选择视图 正面图应能较多地反映形体各组成部分的形状特征和相互位置关系 3 选择比例 定图幅4 绘制底稿 1 布置视图 画作图基准线 2 按形体分析法 逐个画出各基本体的三视图 画图的顺序 一般是先画主要部分 后画次要部分 画各基本体的投影时 应从形状特征明显的视图入手 三个视图配合着画 5 检查 描深6 标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羊水栓塞弥散性血管内凝血(DIC)与多学科急救方案
- 网络成瘾青少年自我效能提升干预方案
- 维生素D缺乏心脏康复患者运动处方补充方案
- 托育中心托管协议书
- 社区慢病管理服务包优化方案
- 2025年中职教育(幼儿教育)试题及答案
- 2025年中职建筑智能化工程技术(建筑智能化应用)试题及答案
- 2025年中职建筑(建筑测量基础)试题及答案
- 2025-2026学年人教版高二英语上学期必刷常考题之应用文写作
- 2025年中职机电技术(电气综合实操)试题及答案
- 农村自来水试题及答案
- 2025年新高一物理暑假衔接讲练 (人教版)第17讲 专题提升- 动态平衡问题 共点力平衡的临界与极值问题 (学生版)
- 医院计划管理办法试行
- 四年级作文课件讲解教学
- 一年级语文教学课件图片
- 岩土工程勘察教学课件
- 羊奶教学课件讲解
- 海尔人力资源管理制度
- 2026届新高考语文热点复习小说人物心理及其变化分析
- CJ/T 355-2010小型生活污水处理成套设备
- 基于纳米模型的CNTFET器件:机理剖析与模型构建研究
评论
0/150
提交评论