




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2017 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 文科数学文科数学 适用地区 云南 贵州 广西 四川 第 卷 选择题共 60 分 一 选择题 本大题共 12 个小题 每小题 5 分 共 60 分 在每小题给出的四个选项中 只有一个选 项是符合题目要求的 1 已知集合 A 1 2 3 4 B 2 4 6 8 则 A B 中元素的个数为 A 1B 2C 3D 4 解析 由题意可得 A B 2 4 故选 B 答案 B 2 复平面内表示复数 z i 2 i 的点位于 A 第一象限 B 第二象限 C 第三象限D 第四象限 解析 由题意 z 1 2i 故选 B 答案 B 3 某城市为了解游客人数的变化规律 提高旅游服务质量 收集并整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量 单位 万人 的数据 绘制了下面的折线图 根据该折线图 下列结论错误的是 A 月接待游客逐月增加 B 年接待游客量逐年增加 C 各年的月接待游客量高峰期大致在 7 8 月 D 各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月 波动性更小 变化比较平稳 解析 由折线图 7 月份后月接待游客量减少 A 错误 故选 A 答案 A 2 4 已知 sin cos 则 sin2 4 3 A B C D 7 9 2 9 2 9 7 9 解析 sin2 2sin cos 故选 A sin cos 2 1 1 7 9 答案 A 5 设 x y 满足约束条件 则 z x y 的取值范围是 3x 2y 6 0 x 0 y 0 A 3 0 B 3 2 C 0 2 D 0 3 解析 绘制不等式组表示的可行域 结合目标函数的几何意义可得函数在点 A 0 3 处取得最小值 z 0 3 3 在点 B 2 0 处取得最大值 z 2 0 2 故选 A 答案 B 6 函数 f x sin cos的最大值为 x 3 x 6 A B 1C D 6 5 3 5 1 5 解析 由诱导公式可得 cos cos sin x 6 x 3 则 f x sin sin sin 函数的最大值为 故选 A 1 5 x 3 x 3 6 5 x 3 6 5 答案 A 7 函数 y 1 x 的部分图像大致为 sinx x2 解析 当 x 1 时 f 1 1 1 sin1 2 sin1 2 故排除 A C 当 x 时 y 1 x 故排除 B 满足条件的只有 D 故选 D 答案 D 3 8 执行下面的程序框图 为使输出 S 的值小于 91 则输入的正整数 N 的最小值为 A 5B 4 C 3D 2 解析 若 N 2 第一次进入循环 1 2 成立 S 100 M 10 i 2 2 成立 第二次进入 100 10 循环 此时 S 100 10 90 M 1 i 3 2 不成立 输出 S 90b 0 的左 右顶点分别为 A1 A2 且以线段 A1A2为直径的圆与直线 x2 a2 y2 b2 bx ay 2ab 0 相切 则 C 的离心率为 A B C D 6 3 3 3 2 3 1 3 解析 以线段 A1A2为直径的圆是 x2 y2 a2 直线 bx ay 2ab 0 与圆相切 圆心到直线的距离 d a 整理为 a2 3b2 即 a2 3 a2 c2 2a2 3c2 即 e 故选 A 2ab a2 b2 c2 a2 2 3 c a 6 3 答案 A 12 已知函数 f x x2 2x a ex 1 e x 1 有唯一零点 则 a A B C D 1 1 2 1 3 1 2 解析 方法一 由条件 f x x2 2x a ex 1 e x 1 得 f 2 x 2 x 2 2 2 x a e2 x 1 e 2 x 1 x2 4x 4 4 2x a e1 x ex 1 x2 2x a ex 1 e x 1 f 2 x f x 即x 1为f x 的对称轴 由题意 f x 有唯一零点 f x 的零点只能为x 1 即f 1 12 2 1 a e1 1 e 1 1 0 解得a 1 2 方法二 x2 2x a ex 1 e x 1 设g x ex 1 e x 1 g x ex 1 e x 1 ex 1 1 ex 1 e2 x 1 1 ex 1 当g x 0时 x 1 当x 1时 g x 1时 g x 0 函数单调递增 当x 1 时 函数取得最小值g 1 2 设h x x2 2x 当x 1时 函数取得最小值 1 若 a 0 函数h x 和ag x 没 有交点 当 a0 的一条渐近线方程为 y x 则 a x2 a2 y2 9 3 5 解析 由双曲线的标准方程可得渐近线方程为 y x 结合题意可得 a 5 3 a 答案 5 15 ABC 的内角 A B C 的对边分别为 a b c 已知 C 60 b c 3 则 A 6 解析 由题意 即 sinB 结合 b1 的 x 的取值范围是 x 1 x 0 2x x 0 1 2 解析 方法一 f x f x f 1 即f 1 f x x 1 x 0 2x x 0 x 1 2 x 1 2 由图象变换可画出y f与y 1 f x 的图象如下 x 1 2 A 1 2 A 1 2 1 1 4 4 A 1 2 yf x 1 yf x y x 由图可知 满足f 1 f x 的解为 x 1 2 1 4 方法二 由题意得 当 x 时 2x 2x 1 恒成立 即 x 当 01 恒成立 1 2 1 2 1 2 1 2 1 2 6 即 01 x 即 x 0 综上 x 的取值范围是 1 2 1 2 1 4 1 4 1 4 答案 1 4 三 解答题 本大题共 6 小题 共 70 分 解答应写出文字说明 证明过程或演算步骤 第 17 21 题为必考题 每个试题考生都必须作答 第 22 23 题为选考题 考生根据要求作答 一一 必考题 共必考题 共60分 分 17 本小题满分 12 分 设数列 an 满足 a1 3a2 2n 1 an 2n 1 求 an 的通项公式 2 求数列的前 n 项和 an 2n 1 解析 1 a1 3a2 2n 1 an 2n n 2 时 a1 3a2 2n 1 an 1 2 n 1 得 2n 1 an 2 an 2 2n 1 又 n 1 时 a1 2 适合上式 an 2 2n 1 2 由 1 an 2n 1 2 2n 1 2n 1 1 2n 1 1 2n 1 Sn 1 1 a1 3 a2 5 an 2n 1 1 3 1 3 1 5 1 2n 1 1 2n 1 1 2n 1 2n 2n 1 18 本小题满分 12 分 某超市计划按月订购一种酸奶 每天进货量相同 进货成本每瓶 4 元 售价 每瓶 6 元 未售出的酸奶降价处理 以每瓶 2 元的价格当天全部处理完 根据往年销售经验 每天需求 量与当天最高气温 单位 有关 如果最高气温不低于 25 需求量为 500 瓶 如果最高气温位于区间 20 25 需求量为 300 瓶 如果最高气温低于 20 需求量为 200 瓶 为了确定六月份的订购计划 统 计了前三年六月份各天的最高气温数据 得下面的频数分布表 最高气温 10 15 15 20 20 25 25 30 30 35 35 40 天数216362574 以最高气温位于各区间的频率代替最高气温位于该区间的概率 1 求六月份这种酸奶一天的需求量不超过 300 瓶的概率 2 设六月份一天销售这种酸奶的利润为 Y 单位 元 当六月份这种酸奶一天的进货量为 450 瓶时 写出 Y 的所有可能值 并估计 Y 大于零的概率 解析 1 需求量不超过 300 瓶 即最高气温不高于 25 从表中可知有 54 天 所求概率为 P 54 90 3 5 2 Y 的可能值列表如下 7 最高气温 10 15 15 20 20 25 25 30 30 35 35 40 Y 100 100300900900900 低于 20 y 200 6 250 2 450 4 100 20 25 y 300 6 150 2 450 4 300 不低于 25 y 450 6 4 900 Y 大于 0 的概率为 P 2 90 16 90 1 5 19 本小题满分 12 分 如图 四面体 ABCD 中 ABC 是正三角形 AD CD 1 证明 AC BD 2 已知 ACD 是直角三角形 AB BD 若 E 为棱 BD 上与 D 不重合的点 且 AE EC 求四面体 ABCE 与四面体 ACDE 的体积比 解析 1 证明 取 AC 中点 O 连 OD OB AD CD O 为 AC 中点 AC OD 又 ABC 是等边三角形 AC OB 又 OB OD O AC 平面 OBD BD 平面 OBD AC BD 2 设 AD CD 2 AC 2 AB CD 2 22 又 AB BD BD 2 ABD CBD AE EC 2 又 AE EC AC 2 AE EC 2 2 在 ABD 中 设 DE x 根据余弦定理 cos ADB AD2 BD2 AB2 2AD BD AD2 DE2 AE2 2AD DE 22 2 r 2 2 2 r 2 2 2 2 2 2 22 x2 22 2 2 x 解得 x 点 E 是 BD 的中点 则 VD ACE VB ACE 1 2 VD ACE VB ACE 20 本小题满分 12 分 在直角坐标系 xOy 中 曲线 y x2 mx 2 与 x 轴交于 A B 两点 点 C 的坐 标为 0 1 当 m 变化时 解答下列问题 1 能否出现 AC BC 的情况 说明理由 8 2 证明过 A B C 三点的圆在 y 轴上截得的弦长为定值 解析 1 设 A x1 0 B x2 0 则 x1 x2是方程 x2 mx 2 0 的根 x1 x2 m x1x2 2 则 x1 1 x2 1 x1x2 1 2 1 1 0 AC BC 不会能否出现 AC BC 的情况 2 解法一 过 A B C 三点的圆的圆心必在线段 AB 垂直平分线上 设圆心 E x0 y0 则 x0 由 EA EC 得 y02 y0 1 2 x1 x2 2 m 2 x1 x2 2 x1 2 x1 x2 2 2 化简得 y0 1 x1x2 2 1 2 圆 E 的方程为 x m 2 2 y 1 2 2 m 2 2 1 2 1 2 令 x 0 得 y1 1 y2 2 过 A B C 三点的圆在 y 轴上截得的弦长为 1 2 3 过 A B C 三点的圆在 y 轴上截得的弦长为定值 解法二 设过 A B C 三点的圆与 y 轴的另一个交点为 D 由 x1x2 2 可知原点 O 在圆内 由相交弦定理可得 OD OC OA OB x1 x2 2 又 OC 1 OD 2 过 A B C 三点的圆在 y 轴上截得的弦长为 OC OD 3 为定值 21 本小题满分 12 分 已知函数 f x lnx ax2 2a 1 x 1 讨论 f x 的单调性 2 当 a0 2ax2 2a 1 x 1 x 2ax 1 x 1 x 当 a 0 时 f x 0 则 f x 在 0 单调递增 当 a 0 时 则 f x 在 0 单调递增 在 单调递减 1 2a 1 2a 2 由 1 知 当 a0 1 2a 3 4a 1 2a 1 2a 1 2a 则 y 1 0 解得 t 1 1 t y 在 0 1 单调递增 在 1 单调递减 ymax y 1 0 y 0 即 f x max 2 f x 2 3 4a 3 4a 二二 选考题 共选考题 共 10 分 分 请考生在第 22 23 题中任选一题作答 如果多做 则按所做的第一题计分 9 22 本小题满分 10 分 选修 4 4 坐标系与参数方程 在直角坐标系 xOy 中 直线 l1的参数方程为 t 为参数 直线 l2的参数方程为 x 2 t y kt m 为参数 设 l1与 l2的交点为 P 当 k 变化时 P 的轨迹为曲线 C x 2 m y m k 1 写出 C 的普通方程 2 以坐标原点为极点 x 轴正半轴为极轴建立极坐标系 设 l3 cos sin 0 M 为 l3与 C 2 的交点 求 M 的极径 解析 1 将参数方程转化为普通方程 l1 y k x 2 l2 y x 2 1 k 由 消去k可得 x2 y2 4 即P的轨迹方程为x2 y2 4 2 将参数方程转化为一般方程l3 x y 0 2 联立l3和曲线C得 解得 由 解得 x y 2 0 x2 y2 4 x 3 2 2 y 2 2 x cos y sin 5 即M的极半径是 5 23 本小题满分 10 分 选修 4 5 不等式选讲 已知函数 f x x 1 x 2 1 求不等式 f x 1 的解集 2 若不等式 f x x2 x m 的解集非空 求 m 的取值范围 解析 1 f x x 1 x 2 可等价为f x 由f x 1可得 3 x 1 2x 1 1 x 2 3 x 2 当x 1时显然不满足题意 当 1 x 2时 2x 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特殊叉车租赁管理办法
- 特殊材料报废管理办法
- 特种人员集合管理办法
- 特聘农技人员管理办法
- 特许经营管理办法协议
- 玉环招标投标管理办法
- 环保联盟风险管理办法
- 环境噪音污染管理办法
- 体育馆2025年普法推广计划
- 现场工程物资管理办法
- 生物质气化并网发电行业跨境出海战略研究报告
- 盘磨机-设计计算说明书陈少康
- 比亚迪秦EV新能源汽车空调系统
- 2025年安徽高中学业水平合格性考试化学试卷试题(含答案详解)
- 《低能耗建筑多排孔自保温砌块墙体体系应用技术规程》
- 有限空间监理实施细则
- 【五年级】语文上册课课练
- 防御台风复盘工作情况报告
- 拼音卡片(四线三格)
- 省级临床重点专科建设项目神经内科重点专科建设实施方案
- 一年级幼小衔接开学第一课系列:《会问好》教学课件
评论
0/150
提交评论