




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用心 爱心 专心1 广西各市广西各市 20122012 年中考数学试题分类解析汇编年中考数学试题分类解析汇编 专题专题 1212 押轴题 押轴题 1 1 选择题选择题 1 1 20122012 广西北海广西北海 3 3 分 分 如图 等边 ABC 的周长为 6 半径是 1 的 O 从与 AB 相切于点 D 的位置 出发 在 ABC 外部按顺时针方向沿三角形滚动 又回到与 AB 相切于点 D 的位置 则 O 自转了 A 2 周B 3 周C 4 周D 5 周 答案答案 C 考点考点 等边三角形的性质 直线与圆的位置关系 分析分析 该圆运动可分为两部分 在三角形的三边运动以及绕过三角形的三个角 分别计算即可得到圆 的自传周数 O 在三边运动时自转周数 6 2 3 O 绕过三角形外角时 共自转了三角形外角和的度数 360 即一周 O 自转了 3 1 4 周 故选 C 2 2 20122012 广西贵港广西贵港 3 3 分 分 如图 在菱形 ABCD 中 AB BD 点 E F 分别在 BC CD 上 且 BE CF 连接 BF DE 交于点 M 延长 DE 到 H 使 DE BM 连接 AM AH 则以下四个结论 BDF DCE BMD 120 AMH 是等边三角形 S四边形 ABMD AM2 其中正确结论的个数是 3 4 A 1 B 2 C 3 D 4 答案答案 C 考点考点 菱形的性质 全等三角形的判定和性质 等边三角形的判定和性质 平行的性质 分析分析 在菱形 ABCD 中 AB BD AB BD AD ABD 是等边三角形 用心 爱心 专心2 根据菱形的性质可得 BDF C 60 BE CF BC BE CD CF 即 CE DF 在 BDF 和 DCE 中 CE DF BDF C 60 BD CD BDF DCE SAS 故结论 正确 DBF EDC DMF DBF BDE EDC BDE BDC 60 BMD 180 DMF 180 60 120 故结论 正确 DEB EDC C EDC 60 ABM ABD DBF DBF 60 DEB ABM 又 AD BC ADH DEB ADH ABM 在 ABM 和 ADH 中 AB AD ADH ABM DH BM ABM ADH SAS AH AM BAM DAH MAH MAD DAH MAD BAM BAD 60 AMH 是等边三角形 故结论 正确 ABM ADH AMH 的面积等于四边形 ABMD 的面积 又 AMH 的面积 AM AM AM2 1 2 3 2 3 4 S四边形 ABMD AM2 S四边形 ABCD S四边形 ABMD 故结论 小题错误 3 4 综上所述 正确的是 共 3 个 故选 C 3 3 20122012 广西桂林广西桂林 3 3 分 分 如图 在边长为 4 的正方形 ABCD 中 动点 P 从 A 点出发 以每秒 1 个单位 长度的速度沿 AB 向 B 点运动 同时动点 Q 从 B 点出发 以每秒 2 个单位长度的速度沿 BC CD 方向运 动 当 P 运动到 B 点时 P Q 两点同时停止运动 设 P 点运动的时间为 t APQ 的面积为 S 则 S 与 t 的函数关系的图象是 A B C D 用心 爱心 专心3 答案答案 D 考点考点 动点问题的函数图象 正方形的性质 分析分析 动点 Q 从 B 点出发 以每秒 2 个单位长度的速度沿 BC CD 方向运动 点 Q 运动到点 C 的时间为 4 2 2 秒 由题意得 当 0 t 2 时 即点 P 在 AB 上 点 Q 在 BC 上 AP t BQ 2t 为开口向上的抛物线的一部分 2 11 SAP BQt 2tt 22 当 2 t 4 时 即点 P 在 AB 上 点 Q 在 DC 上 AP t AP 上的高为 4 为直线 一次函数 的一部分 11 SAP 4t 42t 22 观察所给图象 符合条件的为选项 D 故选 D 4 4 20122012 广西河池广西河池 3 3 分 分 如图 在矩形 ABCD 中 AD AB 将矩形 ABCD 折叠 使点 C 与点 A 重合 折痕为 MN 连结 CN 若 CDN 的面积与 CMN 的面积比为 1 4 则 的值为 MN BM A 2B 4 C D 2 52 6 答案答案 D 考点考点 翻折变换 折叠问题 折叠的性质 矩形 菱形的判定和性质 勾股定理 分析分析 过点 N 作 NG BC 于 G 由四边形 ABCD 是矩形 易得四边形 CDNG 是矩形 又由折叠的性质 可 得四边形 AMCN 是菱形 由 CDN 的面积与 CMN 的面积比为 1 4 根据等高三角形的面积比等于对应底 的比 可得 DN CM 1 4 然后设 DN x 由勾股定理可求得 MN 的长 从而求得答案 过点 N 作 NG BC 于 G 四边形 ABCD 是矩形 四边形 CDNG 是矩形 AD BC CD NG CG DN ANM CMN 用心 爱心 专心4 由折叠的性质可得 AM CM AMN CMN ANM AMN AM AN AM CM 四边形 AMCN 是平行四边形 AM CM 四边形 AMCN 是菱形 CDN 的面积与 CMN 的面积比为 1 4 DN CM 1 4 设 DN x 则 AN AM CM CN 4x AD BC 5x CG x BM x GM 3x 在 Rt CGN 中 2 222 NGCNCG4xx15x 在 Rt MNG 中 2 2 22 MNGMNG3x15x 2 6x 故选 D MN2 6x 2 6 BMx 5 5 20122012 广西来宾广西来宾 3 3 分 分 如图 已知线段 OA 交 O 于点 B 且 OB AB 点 P 是 O 上的一个动点 那么 OAP 的最大值是 A 30 B 45 C 60 D 90 答案答案 A 考点考点 动点问题 切线的性质 锐角三角函数定义 特殊角的三角函数值 分析分析 如图 当点 P 运动到点 P 即 AP 与 O 相切时 OAP 最大 连接 O P 则 A P O P 即 AO P 是直角三角形 OB AB OB O P OA 2 O P OAP 300 即 OAP 的最大值是 300 故选 A O P1 sin OAP OA2 6 6 20122012 广西柳州广西柳州 3 3 分 分 小兰画了一个函数的图象如图 那么关于 x 的分式方程的 a y1 x a 12 x 解 是 用心 爱心 专心5 A x 1 B x 2 C x 3 D x 4 答案答案 A 考点考点 反比例函数的图象 曲线上点的坐标与方程的关系 分析分析 根据点在曲线上点的坐标满足方程的关系 关于 x 的分式方程的解就是函数 a 12 x 中 a y1 x 纵坐标 y 2 时的横坐标 x 的值 根据图象可以得到 当 y 2 时 x 1 故选 A 7 7 20122012 广西南宁广西南宁 3 3 分 分 已知二次函数 y ax2 bx 1 一次函数 y k x 1 若它们的图象对 2 k 4 于任意的非零实数 k 都只有一个公共点 则 a b 的值分别为 A a 1 b 2 B a 1 b 2 C a 1 b 2 D a 1 b 2 答案答案 B 考点考点 二次函数的性质 一元二次方程根的判别式 解二元一次方程组 分析分析 由 y ax2 bx 1 和 y k x 1 组成的方程组 消去 y 2 k 4 整理得 ax2 b k x 1 k 0 2 k 4 它们的图象对于任意的实数 k 都只有一个公共点 则方程组只有一组解 关于 x 的方程 ax2 b k x 1 k 0 有两相等的实数根 2 k 4 即 b k 2 4a 1 k 0 1 a k2 2 2a b k b2 4a 0 2 k 4 用心 爱心 专心6 对于任意的实数 k 都成立 解得 故选 B 2 1a0 2ab0 b4a0 a1 b2 8 8 20122012 广西钦州广西钦州 3 3 分 分 在平面直角坐标系中 对于平面内任意一点 x y 若规定以下两种变换 f x y y x 如 f 2 3 3 2 g x y x y 如 g 2 3 2 3 按照以上变换有 f g 2 3 f 2 3 3 2 那么 g f 6 7 等于 A 7 6 B 7 6 C 7 6 D 7 6 答案答案 C 考点考点 新定义 点的坐标 分析分析 由题意应先进行 f 方式的变换 再进行 g 方式的变换 注意运算顺序及坐标的符号变化 f 6 7 7 6 g f 6 7 g 7 6 7 6 故选 C 9 9 20122012 广西玉林 防城港广西玉林 防城港 3 3 分 分 一个盒子里有完全相同的三个小球 球上分别标有数字 1 1 2 随 机摸出一个小球 不放回 其数字记为 p 再随机摸出另一个小球其数字记为 q 则满足关于的方程 有实数根的概率是 2 xpxq0 A B C D 2 1 3 1 3 2 6 5 答案答案 A 考点考点 画树状图法或列表法 概率 一元二次方程根的判别式 分析分析 画树状图 p q 组成的一元二次方程共有 6 个 2 xx10 2 xx20 2 xx10 2 xx20 2 x2x10 2 x2x10 其中 的根的判别式小于 0 方程无实数根 2 xx10 2 xx20 2 xx20 的根的判别式大于 0 方程有两个不相等的实数根 2 xx10 2 x2x10 用心 爱心 专心7 的根的判别式等于 0 方程有两个相等的实数根 2 x2x10 即满足关于的方程有实数根的情况有 3 种 2 xpxq0 满足关于的方程有实数根的概率是 故选 A 2 xpxq0 31 62 二 填空题二 填空题 1 1 20122012 广西北海广西北海 3 3 分 分 如图 点 A 的坐标为 1 0 点 B 在直线 y 2x 4 上运动 当线段 AB 最 短时 点 B 的坐标是 答案答案 76 55 分 考点考点 直线上点的坐标与方程的关系 垂直线段最短的性质 相似三角形的判定和性质 分析分析 如图 由题意 根据垂直线段最短的性质 当线段 AB 最短时点 B 的位置 B1 有 AB1 BD 过点 B1作 B1E 垂直 x 轴于点 E 由点 C D 在直线 y 2x 4 可得 C 2 0 D 0 4 设点 B1 x 2x 4 则 E x 0 由 A 1 0 得 AE x 1 EB1 2x 4 4 2x CO 2 DO 4 易得 AB1E DCO 即 AEEB DOCO x 142x 42 解得 B1 76 x2x4 55 分 76 55 分 当线段 AB 最短时 点 B 的坐标是 76 55 分 2 2 20122012 广西贵港广西贵港 2 2 分 分 若直线 y m m 为常数 与函数 y 的图像恒有三个不同的交 x2 x 2 4 x x 2 点 则常数 m 的取值范围是 答案答案 0 m 2 考点考点 二次函数的图象 反比例函数的图象 用心 爱心 专心8 分析分析 分段函数 y 的图象如右图所示 x2 x 2 4 x x 2 故要使直线 y m m 为常数 与函数 y 的图象恒有三个不同的交点 常数 m 的 x2 x 2 4 x x 2 取值范围为 0 m 2 3 3 20122012 广西桂林广西桂林 3 3 分 分 下图是在正方形网格中按规律填成的阴影 根据此规律 则第 n 个图中阴影部 分小正方形的个数是 答案答案 n2 n 2 考点考点 分类归纳 图形的变化类 分析分析 寻找规律 正方形网格中阴影部分小正方形可分为两部分 除最右一排的部分和最右一排的部 分 除最右一排的小正方形个数最右一排的小正方形个数合计小正方形个数 第 1 个图 1 123 4 12 3 第 2 个图 4 22 4 3 18 22 3 1 第 3 个图 9 32 5 3 214 32 3 2 第 n 个图 n2 3 n 1 n 2n2 n 2 4 4 20122012 广西河池广西河池 3 3 分 分 如图 在平面直角坐标系中 矩形 OEFG 的顶点 F 的坐标为 4 2 将矩形 OEFG 绕点 O 逆时针旋转 使点 F 落在 y 轴上 得到矩形 OMNP OM 与 GF 相交于点 A 若经过点 A 的反比例 函数的图象交 EF 于点 B 则点 B 的坐标为 k y x0 x 用心 爱心 专心9 答案答案 4 1 2 考点考点 反比例函数综合题 矩形的性质 旋转的性质 相似三角形的判定和性质 曲线上点的坐标与 方 程的关系 分析分析 矩形 OEFG 绕点 O 逆时针旋转 使点 F 落在 y 轴的点 N 处 得到矩形 OMNP P POM OGF 90 PON PNO 90 GOA PON 90 PNO GOA OGA NPO E 点坐标为 4 0 G 点坐标为 0 2 OE 4 OG 2 OP OG 2 PN GF OE 4 OGA NPO OG NP GA OP 即 2 4 GA 2 GA 1 A 点坐标为 1 2 把 A 1 2 代入得 k 1 2 2 过点 A 的反比例函数解析式为 k y x 2 y x 把 x 4 代入得 B 点坐标为 4 2 y x 1 y 2 1 2 5 5 20122012 广西来宾广西来宾 3 3 分 分 如图 为测量旗杆 AB 的高度 在与 B 距离为 8 米的 C 处测得旗杆顶端 A 的仰 角为 56 那么旗杆的高度约是 米 结果保留整数 参考数据 sin56 0 829 cos56 0 559 tan56 1 483 答案答案 12 考点考点 解直角三角形的应用 仰角仰角问题 锐角三角函数定义 分析分析 直接根据正切函数定义求解 AB BC tan ACB 8 tan56 8 1 483 12 米 6 6 20122012 广西柳州广西柳州 3 3 分 分 已知 在 ABC 中 AC a AB 与 BC 所在直线成 45 角 AC 与 BC 所在直线 形成的夹角的余弦值为 即 cosC 则 AC 边上的中线长是 2 5 5 2 5 5 答案答案 或a 85 a 10 5 10 考点考点 解直角三角形 锐角三角函数定义 三角形中位线定理 勾股定理 分析分析 分两种情况 ABC 为锐角三角形时 如图 1 BE 为 AC 边的中线 用心 爱心 专心10 作 ABC 的高 AD 过点 E 作 EF BC 于点 F 在 Rt ACD 中 AC a cosC 2 5 5 CD a AD a 2 5 5 5 5 在 Rt ABD 中 ABD 45 BD AD a BC BD CD a 5 5 3 5 5 点 E 是 AC 的中点 EF AD EF 是 ACD 的中位线 FC DC a EF AD a 1 2 5 5 1 2 5 10 BF a 2 5 5 在 Rt BEF 中 由勾股定理 得 2 2 222 251785 BEBFEF5aa a a 5102010 ABC 为钝角三角形时 如图 2 BE 为 AC 边的中线 作 ABC 的高 AD 在 Rt ACD 中 AC a cosC 2 5 5 CD a AD a 2 5 5 5 5 在 Rt ABD 中 ABD 45 BD AD a BC BD a 5 5 5 5 点 E 是 AC 的中点 BE 是 ACD 的中位线 BE AD a 1 2 5 10 综上所述 AC 边上的中线长是或a 85 a 10 5 10 7 7 20122012 广西南宁广西南宁 3 3 分 分 有若干张边长都是 2 的四边形纸片和三角形纸片 从中取一些纸片按如图所示 的顺序拼接起来 排在第一位的是四边形 可以组成一个大的平行四边形或一个大的梯形 如果所取 的四边形与三角形纸片数的和是 5 时 那么组成的大平行四边形或梯形的周长是 如果所取 的四边形与三角形纸片数的和是 n 那么组成的大平行四边形或梯形的周长是 答案答案 20 3n 5 或 3n 4 考点考点 分类归纳 图形的变化类 分析分析 第 1 张纸片的周长为 8 用心 爱心 专心11 第 2 张纸片所组成的图形的周长比第 1 张纸片的周长增加了 2 第 3 张纸片所组成的图形的周长比前 2 张纸片所组成的图形的周长增加了 4 按此规律可知 纸张张数为 1 图片周长为 8 3 1 5 纸张张数为 3 图片周长为 8 2 4 3 3 5 纸张张数 为 5 图片周长为 8 2 4 2 4 3 5 5 当 n 为奇数时 组成的大平行四边形或梯形的周长为 3n 5 纸张张数为 1 图片周长为 8 2 3 2 4 纸张张数为 4 图片周长为 8 2 4 2 3 4 4 纸张 张 数为 6 图片周长为 8 2 4 2 4 2 3 6 4 当 n 为偶数时 组成的大平行四边形或梯形的周长为 3n 4 当 n 5 时 3n 5 20 如果所取的四边形与三角形纸片数的和是 5 时 那么组成的大平行四边 形或梯形的周长是 20 如果所取的四边形与三角形纸片数的和是 n 那么组成的大平行四边形或梯形的周长是 3n 5 或 3n 4 8 8 20122012 广西钦州广西钦州 3 3 分 分 如图 直线与 x 轴 y 轴分别交于 A B 两点 把 AOB 绕点 A 旋 3 yx3 2 转 90 后得到 AO B 则点 B 的坐标是 答案答案 1 2 或 5 2 考点考点 坐标与图形的旋转变化 分析分析 当 y 0 时 解得 x 2 当 x 0 时 y 3 3 x30 2 点 A 2 0 B 0 3 OA 2 OB 3 根据旋转不变性可得 AOB AO B AO OA 2 O B OB 3 如果 AOB 是逆时针旋转 90 则点 B 1 2 如果 AOB 是顺时针旋转 90 则点 B 5 2 综上 点 B 的坐标是 1 2 或 5 2 9 9 20122012 广西玉林 防城港广西玉林 防城港 3 3 分 分 二次函数的图像与轴围成的封闭区域内 包括边 29 yx2 4 x 用心 爱心 专心12 界 横 纵坐标都是整数的点有 个 提示 必要时可利用下面的备用图画出图像来分析 答案答案 7 考点考点 网格问题 二次函数的图像 分析分析 作出二次函数的图像即可得出二次函数的图像与轴围成的封 29 yx2 4 2 9 yx2 4 x 闭区域内 包括边界 横 纵坐标都是整数的点有 7 个 三 解答题三 解答题 1 1 20122012 广西北海广西北海 1010 分 分 如图 AB 是 O 的直径 AE 交 O 于点 E 且与 O 的切线 CD 互相垂直 垂足 为 D 1 求证 EAC CAB 2 若 CD 4 AD 8 求 O 的半径 求 tan BAE 的值 答案答案 1 证明 连接 OC CD 是 O 的切线 CD OC 又 CD AE OC AE 1 3 用心 爱心 专心13 OC OA 2 3 1 2 即 EAC CAB 2 解 连接 BC AB 是 O 的直径 CD AE 于点 D ACB ADC 90 1 2 ACD ABC ADAC ACAB AC2 AD2 CD2 42 82 80 AB 10 2 AC AD 80 8 O 的半径为 10 2 5 连接 CF 与 BF 四边形 ABCF 是 O 的内接四边形 ABC AFC 180 DFC AFC 180 DFC ABC 2 ABC 90 DFC DCF 90 2 DCF 1 2 1 DCF CDF CDF DCF DAC DF 2 CDDF ADCD 22 CD AD 4 8 AF AD DF 8 2 6 AB 是 O 的直径 BFA 90 BF 8 tan BAD 2222 ABAF106 BF AF 84 63 考点考点 切线的性质 平行的判定和性质 等腰三角形的性质 圆周角定理 勾股定理 相似三角形的 判定和性质 锐角三角函数定义 分析分析 1 连接 OC 由 CD 是 O 的切线 CD OC 又由 CD AE 即可判定 OC AE 根据平行线的性 质与等腰三角形的性质 即可证得 EAC CAB 2 连接 BC 易证得 ACD ABC 根据相似三角形的对应边成比例 即可求得 AB 的长 从而可得 O 的半径长 连接 CF 与 BF 由四边形 ABCF 是 O 的内接四边形 易证得 DCF DAC 然后根据 相似三角形的对应边成比例 求得 AF 的长 又由 AB 是 O 的直径 即可得 BFA 是直角 利用勾股定理 用心 爱心 专心14 求得 BF 的长 即可求得 tan BAE 的值 2 2 20122012 广西北海广西北海 1212 分 分 如图 在平面直角坐标系中有 Rt ABC A 90 AB AC A 2 0 B 0 1 C d 2 1 求 d 的值 2 将 ABC 沿 x 轴的正方向平移 在第一象限内 B C 两点的对应点 B C 正好落在某反比例函数 图 像上 请求出这个反比例函数和此时的直线 B C 的解析式 3 在 2 的条件下 直线 B C 交 y 轴于点 G 问是否存在 x 轴上的点 M 和反比例函数图像上的点 P 使得四边形 PGMC 是平行四边形 如果存在 请求出点 M 和点 P 的坐标 如果不存在 请说明理由 答案答案 解 1 作 CN x 轴于点 N 在 Rt CNA 和 Rt AOB 中 NC OA 2 AC AB Rt CNA Rt AOB HL AN BO 1 NO NA AO 3 又 点 C 在第二象限 d 3 2 设反比例函数为 点 C 和 B 在该比例函数图像上 k y x 设 C c 2 则 B c 3 1 把点 C 和 的坐标分别代入 得 k 2 c k c 3 k y x 2 c c 3 c 3 则 k 6 反比例函数解析式为 6 y x 得点 C 3 2 B 6 1 用心 爱心 专心15 设直线 C B 的解析式为 y ax b 把 C B 两点坐标代入得 解得 3ab2 6ab1 1 a 3 b3 直线 C B 的解析式为 1 yx3 3 3 设 Q 是 G C 的中点 由 G 0 3 C 3 2 得点 Q 的横坐标为 点 Q 的纵坐 3 2 标为 2 Q 325 22 3 2 5 2 过点 Q 作直线 l 与 x 轴交于 M 点 与的 6 y x 图象交于 P 点 若四边形 P G M C 是平行四边形 则有 P Q Q M 易知点 M 的横坐标大于 点 P 的横坐标小于 3 2 3 2 作 P x 轴于点 H QK y 轴于点 K P H 与 QK 交于点 E 作 QF x 轴于点 F 则 P EQ QFM 设 EQ FM t 则点 P 的横坐标 x 为 点 P 的纵坐标 y 为 3 t 2 6612 3 x32t t 2 点 M 的坐标是 0 3 t 2 P E 125 32t2 由 P Q QM 得 P E2 EQ2 QF2 FM 2 22 22 1255 tt 32t22 整理得 解得 经检验 它是分式方程的解 12 5 32t 3 t 10 3336 t 22105 1212 5 3 32t 32 10 3339 t 22105 P 5 M 0 则点 P 为所求的点 P 点 M 为所求的点 M 6 5 9 5 考点考点 反比例函数综合题 全等三角形的判定和性质 待定系数法 曲线上点的坐标与方程的关系 用心 爱心 专心16 平移的性质 平行四边形的和性质 勾股定理 解分式方程和二元一次方程组 分析分析 1 作 CN x 轴于点 N 由 Rt CNA Rt AOB 即可求得 d 的值 2 根据平移的性质 用待定系数法求出反比例函数和直线 B C 的解析式 3 根据平行四边形对角线互相平分的性质 取 G C 的中点 Q 过点 Q 作直线 l 与 x 轴交于 M 点 与的图象交于 P 点 求出 P Q Q M 的点 M 和 P 的坐标即可 6 y x 3 3 20122012 广西贵港广西贵港 1111 分 分 如图 Rt ABC 的内切圆 O 与 AB BC CA 分别相切于点 D E F 且 ACB 90 AB 5 BC 3 点 P 在射线 AC 上运动 过点 P 作 PH AB 垂足为 H 1 直接写出线段 AC AD 以及 O 半径的长 2 设 PH x PC y 求 y 关于 x 的函数关系式 3 当 PH 与 O 相切时 求相应的 y 值 答案答案 解 1 AC 4 AD 3 O 半径的长为 1 2 在 Rt ABC 中 AB 5 AC 4 则 BC 3 C 90 PH AB C PHA 90 A A AHP ACB 即 PHAPACPC BCABAB x4y 35 即 y 与 x 的函数关系式是 5 yx 4 3 5 yx 4 3 3 如图 P H 与 O 相切于点 M 连接 OD OE OF OM OMH MH D H DO 90 OM OD 四边形 OMH D 是正方形 MH OM 1 CE CF 是 O 的切线 ACB 90 CFO FCE CEO 90 CF CE 四边形 CEOF 是正方形 CF OF 1 P H P M MH P F FC P C 即 x y 又由 2 知 解得 5 yx 4 3 5 yy 4 3 3 y 2 用心 爱心 专心17 考点考点 圆的综合题 圆的切线性质 勾股定理 正方形的判定和性质 相似三角形的判定和性质 分析分析 1 连接 AO DO EO FO 设 O 的半径为 r 在 Rt ABC 中 由勾股定理得 AC 22 ABBC4 O 的半径 r AC BC AB 4 3 5 1 1 2 1 2 CE CF 是 O 的切线 ACB 90 CFO FCE CEO 90 CF CE 四边形 CEOF 是正方形 CF OF 1 又 AD AF 是 O 的切线 AF AD AF AC CF AC OF 4 1 3 即 AD 3 2 通过相似三角形 AHP ACB 的对应边成比例知 将 PHAPACPC BCABAB PH x PC y 代入求出即可求得 y 关于 x 的函数关系式 3 根据圆的切线定理证得四边形 OMH D 四边形 CFOE 为正方形 然后利用正方形的性质 圆 的切线定理推知 P H P M MH P F FC P C 即 x y 最后将其代入 2 中的函数关系式即可求 得 y 值 4 4 20122012 广西贵港广西贵港 1212 分 分 如图 在平面直角坐标系 xOy 中 抛物线 y ax2 bx 3 的顶点为 M 2 1 交 x 轴于 A B 两点 交 y 轴于点 C 其中点 B 的坐标为 3 0 1 求该抛物线的解析式 2 设经过点 C 的直线与该抛物线的另一个交点为 D 且直线 CD 和直线 CA 关于直线 BC 对称 求直线 CD 的解析式 3 在该抛物线的对称轴上存在点 P 满足 PM2 PB2 PC2 35 求点 P 的坐标 并直接写出此时直线 OP 与该抛物线交点的个数 答案答案 解 1 抛物线 y ax2 bx 3 的顶点为 M 2 1 设抛物线的解析式为线 2y a x21 用心 爱心 专心18 点 B 3 0 在抛物线上 解得 20 a 321 a 1 该抛物线的解析式为 即 2y x21 2 y x4x 3 2 在中令 x 0 得 C 0 3 2 y x4x 3 y 3 OB OC 3 ABC 450 过点 B 作 BN x 轴交 CD 于点 N 如图 则 ABC NBC 450 直线 CD 和直线 CA 关于直线 BC 对称 ACB NCB 又 CB CB ACB NCB ASA BN BA A B 关于抛物线的对称轴 x 2 对称 B 3 0 A 1 0 BN BA 2 N 3 2 设直线 CD 的解析式为 y kx b C 0 3 N 3 2 在直线 CD 上 解得 b 3 3k b 2 1 k 3 b 3 直线 CD 的解析式为 1 y x 3 3 3 设 P 2 p M 2 1 B 3 0 C 0 3 根据勾股定理 得 2 22 PMp 1 p 2p 1 2 222 PB 32 p p 1 2 222 PC 2 p3 p6p 13 PM2 PB2 PC2 35 222 p 2p 1 p 1 p6p 13 35 整理 得 解得 2 3p4p20 0 12 10 p 2p 3 分 P 2 2 或 2 10 3 当 P 2 2 时 直线 OP 与该抛物线无交点 当 P 2 时 直线 OP 与该抛物 10 3 线有两交点 用心 爱心 专心19 考点考点 二次函数综合题 待定系数法 曲线上点的坐标与方程的关系 二次函数的性质 轴对称的性 质 全等三角形的判定和性质 勾股定理 一元二次方程根的判别式 分析分析 1 由于已知抛物线的顶点坐标 所以可设抛物线的顶点式 用待定系数法求解 2 由直线 CD 和直线 CA 关于直线 BC 对称 构造全等三角形 过点 B 作 BN x 轴交 CD 于点 N 求出点 N 的坐标 由点 B N 的坐标 用待定系数法求出直线 CD 的解析式 3 设 P 2 p 根据勾股定理分别求出 PM2 PB2和 PC2 由 PM2 PB2 PC2 35 列式求解即 可求得点 P 的坐标 2 2 或 2 10 3 当 P 2 2 时 直线 OP 的解析式为 与联立 得 y x 2 y x4x 3 2 x x4x 3 即 9 12 3 0 无解 即直线 OP 与抛物线无交点 2 x3x 3 0 2 x3x 3 0 当 P 2 时 直线 OP 的解析式为 与联立 得 10 3 5 y x 3 2 y x4x 3 2 5 x x4x 3 3 即 289 108 181 0 有两不相等的实数根 即直线 OP 与抛物线 2 3x17x 9 0 2 3x17x 9 0 有两个交点 5 5 20122012 广西桂林广西桂林 1010 分 分 如图 等圆 O1和 O2相交于 A B 两点 O1经过 O2的圆心 顺次连接 A O1 B O2 1 求证 四边形 AO1BO2是菱形 2 过直径 AC 的端点 C 作 O1的切线 CE 交 AB 的延长线于 E 连接 CO2交 AE 于 D 求证 CE 2O2D 3 在 2 的条件下 若 AO2D 的面积为 1 求 BO2D 的面积 答案答案 解 1 证明 O1与 O2是等圆 AO1 O1B BO2 O2A 四边形 AO1BO2是菱形 2 证明 四边形 AO1BO2是菱形 O1AB O2AB CE 是 O1的切线 AC 是 O1的直径 ACE AO2C 90 ACE AO2D 即 CE 2DO2 22 DOAO1 ECAC2 3 四边形 AO1BO2是菱形 AC BO2 ACD BO2D AD 2BD 2 BODB1 ADAC2 用心 爱心 专心20 S 2 AO D S1 2 O DB 1 S 2 考点考点 相交两圆的性质 菱形的判定和性质 圆周角定理 相似三角形的判定和性质 分析分析 1 根据 O1 与 O2是等圆 可得 AO1 O1B BO2 O2A 利用四条边都相等的四边形是菱形可判定 出结论 2 根据已知得出 ACE AO2D 从而得出 即可得出结论 22 DOAO1 ECAC2 3 首先证明 ACD BO2D 得出 AD 2BD 再利用等高不等底的三角形面积 2 BODB1 ADAC2 关系得出答案即可 6 6 20122012 广西桂林广西桂林 1212 分 分 如图 在 ABC 中 BAC 90 AB AC 6 D 为 BC 的中点 1 若 E F 分别是 AB AC 上的点 且 AE CF 求证 AED CFD 2 当点 F E 分别从 C A 两点同时出发 以每秒 1 个单位长度的速度沿 CA AB 运动 到点 A B 时停止 设 DEF 的面积为 y F 点运动的时间为 x 求 y 与 x 的函数关系式 3 在 2 的条件下 点 F E 分别沿 CA AB 的延长线继续运动 求此时 y 与 x 的函数关系式 答案答案 解 1 证明 BAC 90 AB AC 6 D 为 BC 中点 BAD DAC B C 45 AD BD DC 3 2 AE CF AED CFD SAS 2 依题意有 FC AE x AF 6 x AED CFD AEDADFCFDADFADCAEDF 1 SSSSSS3 2 3 29 2 分分 边 2 DEFAEFAEDF 11 SSS9x 6xx3x 9 22 分分 边 2 1 yx3x 9 2 3 依题意有 FC AE x AF BE x 6 AD DB ABD DAC 45 DAF DBE 135 ADF BDE SAS ADFBDE SS 2 DEFEAFADB 11 SS Sx x6 9x3x 9 22 用心 爱心 专心21 2 1 yx3x 9 2 考点考点 动点问题 勾股定理 全等三角形的判定和性质 等腰直角三角形的判定和性质 等积变换 分析分析 1 由已知推出 ABC 是等腰直角三角形后易用 SAS 证得结果 2 由 AED CFD 根据等积变换由可得结果 DEFAEFAEDF SSS 分分 边 3 由 AED CFD 根据等积变换由可得结果 DEFEAFADB SS S 7 7 20122012 广西河池广西河池 1010 分 分 随着人们环保意识的不断增强 我市家庭电动自行车的拥有量逐年增加 据 统 计 某小区 2009 年底拥有家庭电动自行车 125 辆 2011 年底家庭电动自行车的拥有量达到 180 辆 1 若该小区 2009 年底到 2012 年底家庭电动自行车拥有量的年平均增长率相同 则该小区到 2012 年 底电动自行车将达到多少辆 2 为了缓解停车矛盾 该小区决定投资 3 万元再建若干个停车位 据测算 建造费用分别为室内车 位 1000 元 个 露天车位 200 元 个 考虑到实际因素 计划露天车位的数量不少于室内车位的 2 倍 但 不超过室内车位的 2 5 倍 则该小区最多可建两种车位各多少个 试写出所有可能的方案 答案答案 解 1 设家庭电动自行车拥有量的年平均增长率为 x 则 125 1 x 2 180 解得 x1 0 2 25 x2 2 2 不合题意 舍去 180 1 20 216 辆 答 该小区到 2012 年底家庭电动自行车将达到 216 辆 2 设该小区可建室内车位 a 个 露天车位 b 个 则 1000a200b30000 2ab2 5a 由 得 b 150 5a 代入 得 20 a 150 7 a 是正整数 a 20 或 21 当 a 20 时 b 50 当 a 21 时 b 45 方案一 建室内车位 20 个 露天车位 50 个 方案二 室内车位 21 个 露天车位 45 个 考点考点 一元二次方程和一元一次不等式组的应用 分析分析 1 设年平均增长率是 x 根据某小区 2009 年底拥有家庭电动自行车 125 辆 2011 年底家庭 电动自行车的拥有量达到 180 辆 可求出增长率 进而可求出到 2012 年底家庭电动车将达到多少辆 2 设建 x 个室内车位 根据投资钱数可表示出露天车位 根据计划露天车位的数量不少于室 用心 爱心 专心22 内车位的 2 倍 但不超过室内车位的 3 倍 可列出不等式组求解 进而可求出方案情况 8 8 20122012 广西河池广西河池 1212 分 分 如图 在等腰三角形 ABC 中 AB AC 以底边 BC 的垂直平分线和 BC 所在 的直线建立平面直角坐标系 抛物线经过 A B 两点 2 17 yxx4 22 1 写出点 A 点 B 的坐标 2 若一条与 y 轴重合的直线 l 以每秒 2 个单位长度的速度向右平移 分别交线段 OA CA 和抛物 线于点 E M 和点 P 连结 PA PB 设直线 l 移动的时间为 t 0 t 4 秒 求四边形 PBCA 的面积 S 面 积单位 与 t 秒 的函数关系式 并求出四边形 PBCA 的最大面积 3 在 2 的条件下 抛物线上是否存在一点 P 使得 PAM 是直角三角形 若存在 请求出点 P 的坐标 若不存在 请说明理由 答案答案 解 1 A 8 0 B 0 4 2 AB AC OB OC C 0 4 设直线 AC 由 A 8 0 C 0 4 得y kx b 解得 直线 AC 8k b 0 b 4 1 k 2 b 4 1 y x4 2 直线 l 移动的速度为 2 时间为 t OE 2t 设 P 2 2t2t7t4 分 在中 令 x 2t 得 M 2t 1 y x4 2 y t4 t4 BC 8 PM OE 2t EA 22 2t7t4t4 2t6t8 42t 22 PMABCMP 11 SSS2t6t882t42t2t6t8 22 分分 2 4t20t16 四边形 PBCA 的面积 S 与 t 的函数关系式为 0 t 4 2 S 4t20t16 用心 爱心 专心23 2 2 5 S 4t20t16 4 t41 2 四边形 PBCA 的最大面积为 41 个平方单位 3 存在 由 2 在 0 t 4 即 0 t 8 时 AMP 和 APM 不可能为直角 若 PAM 为直角 则 PA CA AOC PEA OCOA EAEP 设 P 则 OC 4 OA 8 EA 8 p EP 2 17 ppp4 22 2 17 pp4 22 整理得 解得 舍去 2 48 17 8p pp4 22 2 p11p24 0 12 p 3p 8 当时 P 3 10 p 3 22 1717 pp4 334 10 2222 当 P 3 10 时 PAM 是直角三角形 考点考点 二次函数综合题 动直线问题 待定系数法 曲线上点的坐标与方程的关系 二次函数最值 相似三角形的判定和性质 直角三角形的判定 分析分析 1 在中 令 x 0 得 y 4 令 y 0 得 x 1 或 x 8 2 17 yxx4 22 A 8 0 B 0 4 2 由 AB AC 根据等腰三角形三线合一的性质可得点 C 的坐标 从而用待定系数法求出直线 AC 的解析式 得到点 M 关于 t 的表达式 根据求出四边形 PBCA 的面积 S 与 t 的函 PMABCMP SSS 分分 数关系式 应用二次函数最值的求法求出四边形 PBCA 的最大面积 3 存在 易知 AMP 和 APM 不可能为直角 当 PAM 为直角时 AOC PEA 根据比例关 系列出方程求解即可 9 9 20122012 广西来宾广西来宾 1010 分 分 如图 AB 是 O 的直径 点 C 是 O 上一点 BAC 的平分线 AD 交 O 于点 D 过点 D 垂直于 AC 的直线交 AC 的延长线于点 E 1 求证 DE 是 O 的切线 2 如图 AD 5 AE 4 求 O 的直径 答案答案 1 证明 如图 连接 OD 用心 爱心 专心24 AD 为 CAB 的平分线 CAD BAD 又 OA OD BAD ODA CAD ODA AC OD E EDO 180 又 AE ED 即 E 90 EDO 90 OD 为圆 O 的切线 2 解 如图 连接 BD AB 为圆 O 的直径 ADB 90 在 Rt AED 中 AE 4 AD 5 AE 4 cos EAD AD5 又 EAD DAB 在 Rt ABD 中 AD4 cos DAB AB5 即圆的直径为 5525 AB AD 5 444 25 4 考点考点 等腰三角形的性质 平行的判定和性质 切线的判定 圆周角定理 锐角三角函数定义 特殊 角的三角函数值 分析分析 1 连接 OD 由 AD 为角平分线 得到一对角相等 再由 OA OD 得到一对角相等 等量代换 得到一对内错角相等 根据内错角相等两直线平行可得 AC OD 由两直线平行同旁内角互补 得到 E 与 EDO 互补 再由 E 为直角 可得 EDO 为直角 即 DE 为圆 O 的切线 2 连接 BD 由 AB 为 O 的直径 根据直径所对的圆周角为直角的性质 得到 ADB 90 在 Rt AED 中 由 AE 和 AD 的长 根据锐角三角函数定义求出 cos EAD 又在 Rt ABD 中 根据锐角 4 5 三角函数定义得到 即可求出直径 AB 的长 AD4 cos DAB AB5 10 10 20122012 广西来宾广西来宾 1212 分 分 已知抛物线 y ax2 2x c 的图象与 x 轴交于点 A 3 0 和点 C 与 y 轴交于 点 B 0 3 1 求抛物线的解析式 2 在抛物线的对称轴上找一点 D 使得点 D 到点 B C 的距离之和最小 并求出点 D 的坐标 3 在第一象限的抛物线上 是否存在一点 P 使得 ABP 的面积最大 若存在 求出点 P 的坐标 若 不存在 请说明理由 用心 爱心 专心25 答案答案 解 1 抛物线 y ax2 2x c 的图象经过点 A 3 0 和点 B 0 3 解得 9a6c0 c3 a1 c3 抛物线的解析式为 2 yx2x3 2 对称轴为 x 1 2 2 yx2x3x14 令 解得 x1 3 x2 1 C 1 0 2 yx2x30 如图 1 所示 连接 AB 与对称轴 x 1 的交点即为所求之 D 点 由于 A C 两点关于对称轴对称 则此时 DB DC DB DA AB 最小 设直线 AB 的解析式为 y kx b 由 A 3 0 B 0 3 可得 解得 3kb0 b3 k1 b3 直线 AB 解析式为 y x 3 当 x 1 时 y 2 D 点坐标为 1 2 3 结论 存在 如图 2 设 P x y 是第一象限的抛物线上一点 过点 P 作 PN x 轴于点 N 则 ON x PN y AN OA ON 3 x ABPPNAAOBPNOB SSSS 分分 111 OBPNON PN AN OA OB 222 11139 3yxy3x3 3xy 22222 分分 分分分分分分 P x y 在抛物线上 代入上式得 2 yx2x3 用心 爱心 专心26 22 ABP 3933327 Sxyx3xx 22222 8 分分分分分分 当 x 时 S ABP取得最大值 3 2 当 x 时 P 3 2 2 3315 y23 224 3 2 15 4 在第一象限的抛物线上 存在一点 P 使得 ABP 的面积最大 P 点的坐标为 3 2 15 4 考点考点 二次函数综合题 待定系数法 曲线上点的坐标与方程的关系 二次函数的性质 轴对称的性 质 分析分析 1 利用待定系数法求出抛物线的解析式 2 连接 AB 与对称轴 x 1 的交点即为所求之 D 点 为求 D 点坐标 求出直线 AB 的解析式 然 后令 x 1 求得 y 即可求出 D 点坐标 3 求出 ABP 的面积表达式 这个表达式是一个关于 P 点横坐标的二次函数 利用二次函数求 极值的方法可以确定 P 点的坐标 11 11 20122012 广西柳州广西柳州 1010 分 分 如图 AB 是 O 的直径 AC 是弦 1 请你按下面步骤画图 画图或作辅助线时先使用铅笔画出 确定后必须使用黑色字迹的签字笔描黑 第一步 过点 A 作 BAC 的角平分线 交 O 于点 D 第二步 过点 D 作 AC 的垂线 交 AC 的延长线于点 E 第三步 连接 BD 2 求证 AD2 AE AB 3 连接 EO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年能源资源行业能源结构调整报告:新能源占比提升的路径与挑战应对策略
- 2025年能源领域CCS项目经济性评价与风险防范策略报告
- 水利法律考试试题及答案
- 军职在线考试试题及答案
- 大班知识培训内容课件
- 2024年九江市柴桑区城区中小学校选调教师真题
- 山东出的课件网
- 大棚养护桃蛋的知识培训
- 2024年亳州市涡阳县县直公立医院招聘真题
- 窗帘生产周期协议
- 沉淀池安全操作规程
- 职业规划杨彬课件
- 车间现场品质培训
- 新教师职业素养提升培训
- 2025年高考英语全国一卷听力评析及备考建议
- 小学生课件藏文版下载
- 中试基地管理制度
- 2025至2030中国工业电机行业产业运行态势及投资规划深度研究报告
- 养老院电动车管理制度
- 2026届高考语文复习:辨析并修改病句
- 2025年区域卫生规划与医疗卫生资源优化配置的研究报告
评论
0/150
提交评论