常见图像边缘检测算法检测_第1页
常见图像边缘检测算法检测_第2页
常见图像边缘检测算法检测_第3页
常见图像边缘检测算法检测_第4页
常见图像边缘检测算法检测_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

不同图像灰度不同 边界处一般会有明显的边缘 利用此特征可以分割图 像 需要说明的是 边缘和物体间的边界并不等同 边缘指的是图像中像素的 值有突变的地方 而物体间的边界指的是现实场景中的存在于物体之间的边界 有可能有边缘的地方并非边界 也有可能边界的地方并无边缘 因为现实世界 中的物体是三维的 而图像只具有二维信息 从三维到二维的投影成像不可避 免的会丢失一部分信息 另外 成像过程中的光照和噪声也是不可避免的重要 因素 正是因为这些原因 基于边缘的图像分割仍然是当前图像研究中的世界 级难题 目前研究者正在试图在边缘提取中加入高层的语义信息 在实际的图像分割中 往往只用到一阶和二阶导数 虽然 原理上 可以 用更高阶的导数 但是 因为噪声的影响 在纯粹二阶的导数操作中就会出现 对噪声的敏感现象 三阶以上的导数信息往往失去了应用价值 二阶导数还可 以说明灰度突变的类型 在有些情况下 如灰度变化均匀的图像 只利用一阶 导数可能找不到边界 此时二阶导数就能提供很有用的信息 二阶导数对噪声 也比较敏感 解决的方法是先对图像进行平滑滤波 消除部分噪声 再进行边 缘检测 不过 利用二阶导数信息的算法是基于过零检测的 因此得到的边缘 点数比较少 有利于后继的处理和识别工作 各种算子的存在就是对这种导数分割原理进行的实例化计算 是为了在计 算过程中直接使用的一种计算单位 1 Sobel 算子 其主要用于边缘检测 在技术上它是以离散型的差分算子 用来运算图像亮 度函数的梯度的近似值 Sobel 算子是典型的基于一阶导数的边缘检测算子 由于该算子中引入了类似局部平均的运算 因此对噪声具有平滑作用 能很好 的消除噪声的影响 Sobel 算子对于象素的位置的影响做了加权 与 Prewitt 算 子 Roberts 算子相比因此效果更好 Sobel 算子包含两组 3x3 的矩阵 分别为横向及纵向模板 将之与图像作平 面卷积 即可分别得出横向及纵向的亮度差分近似值 实际使用中 常用如下 两个模板来检测图像边缘 检测水平边沿 横向模板 检测垂直平边沿纵向模 101 101 101 Gx 板 图像的每一个像素的横向及纵向梯度近似值可用以下的 11 0 1 Gy 公式结合 来计算梯度的大小 然后可用以下公式计算梯度方向 在以上例子中 如果以上的角度 等于零 即代表图像该处拥有纵向边 缘 左方较右方暗 缺点是 Sobel 算子并没有将图像的主题与背景严格地区分 开来 换言之就是 Sobel 算子并没有基于图像灰度进行处理 由于 Sobel 算子并 没有严格地模拟人的视觉生理特征 所以提取的图像轮廓有时并不能令人满意 2 Isotropic Sobel 算子 Sobel 算子另一种形式是 Isotropic Sobel 算子 加权平均算子 权值反比于 邻点与中心点的距离 当沿不同方向检测边缘时梯度幅度一致 就是通常所说 的各向同性 Sobel Isotropic Sobel 算子 模板也有两个 一个是检测水平边沿的 另一个是检测垂直平边沿的 各向同性 Sobel 算子和普通 Sobel 算子相比 它的位置加权系数更为准确 在检测不同方向的边沿时梯度的幅度一致 3 Roberts 算子 罗伯茨算子 Roberts 算子是一种最简单的算子 是一种利用局部差分算子 寻找边缘的算子 他采用对角线方向相邻两象素之差近似梯度幅值检测边缘 检测垂直边缘的效果好于斜向边缘 定位精度高 对噪声敏感 无法抑制噪声的 影响 1963 年 Roberts 提出了这种寻找边缘的算子 Roberts 边缘算子是一个 2x2 的模板 采用的是对角方向相邻的两个像素之 差 从图像处理的实际效果来看 边缘定位较准 对噪声敏感 适用于边缘明 显且噪声较少的图像分割 Roberts 边缘检测算子是一种利用局部差分算子寻找 边缘的算子 Robert 算子图像处理后结果边缘不是很平滑 经分析 由于 Robert 算子通常会在图像边缘附近的区域内产生较宽的响应 故采用上述算子检测的 边缘图像常需做细化处理 边缘定位的精度不是很高 4 Prewitt 算子 Prewitt 算子是一种一阶微分算子的边缘检测 利用像素点上下 左右邻点 的灰度差 在边缘处达到极值检测边缘 去掉部分伪边缘 对噪声具有平滑作 用 其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的 这 两个方向模板一个检测水平边缘 一个检测垂直边缘 对数字图像 f x y Prewitt 算子的定义如下 G i f i 1 j 1 f i 1 j f i 1 j 1 f i 1 j 1 f i 1 j f i 1 j 1 G j f i 1 j 1 f i j 1 f i 1 j 1 f i 1 j 1 f i j 1 f i 1 j 1 则 P i j max G i G j 或 P i j G i G j 经典 Prewitt 算子认为 凡灰度新值大于或等于阈值的像素点都是边缘点 即选择适当的阈值 T 若 P i j T 则 i j 为边缘点 P i j 为边缘图像 这种判 定是欠合理的 会造成边缘点的误判 因为许多噪声点的灰度值也很大 而且 对于幅值较小的边缘点 其边缘反而丢失了 Prewitt 算子对噪声有抑制作用 抑制噪声的原理是通过像素平均 但是像 素平均相当于对图像的低通滤波 所以 Prewitt 算子对边缘的定位不如 Roberts 算子 因为平均能减少或消除噪声 Prewitt 梯度算子法就是先求平均 再求差分 来求梯度 水平和垂直梯度模板分别为 检测水平边沿 横向模板 检测垂直平边沿 纵向模板 101 101 101 Gx 11 0 1 Gy 该算子与 Sobel 算子类似 只是权值有所变化 但两者实现起来功能还是 有差距的 据经验得知 Sobel 要比 Prewitt 更能准确检测图像边缘 5 Laplacian 算子 Laplace 算子是一种各向同性算子 二阶微分算子 在只关心边缘的位置而 不考虑其周围的象素灰度差值时比较合适 Laplace 算子对孤立象素的响应要比 对边缘或线的响应要更强烈 因此只适用于无噪声图象 存在噪声情况下 使 用 Laplacian 算子检测边缘之前需要先进行低通滤波 所以 通常的分割算法都 是把 Laplacian 算子和平滑算子结合起来生成一个新的模板 拉普拉斯算子也是最简单的各向同性微分算子 具有旋转不变性 一个二 维图像函数的拉普拉斯变换是各向同性的二阶导数 定义 了更适合于数字图像处理 将拉式算子表示为离散形式 另外 拉普拉斯算子还可以表示成模板的形式 如下图所示 离散拉普拉斯算子的模板 其扩展模板 0 拉式算子用来改善因扩散效应的模糊特别有效 因为它符合降制模型 扩 散效应是成像过程中经常发生的现象 Laplacian 算子一般不以其原始形式用于边缘检测 因为其作为一个二阶导 数 Laplacian 算子对噪声具有无法接受的敏感性 同时其幅值产生算边缘 这 是复杂的分割不希望有的结果 最后 Laplacian 算子不能检测边缘的方向 所以 Laplacian 在分割中所起的作用包括 1 利用它的零交叉性质进行边缘定位 2 确定一个像素是在一条边缘暗的一面还是亮的一面 一般使用的是高斯型 拉普拉斯算子 Laplacian of a Gaussian LoG 由于二阶导数是线性运算 利用 LoG 卷积一幅图像与首先使用高斯型平滑函数卷积改图像 然后计算所得结果 的拉普拉斯是一样的 所以在 LoG 公式中使用高斯函数的目的就是对图像进行 平滑处理 使用 Laplacian 算子的目的是提供一幅用零交叉确定边缘位置的图像 图像的平滑处理减少了噪声的影响并且它的主要作用还是抵消由 Laplacian 算子 的二阶导数引起的逐渐增加的噪声影响 6 Canny 算子 该算子功能比前面几种都要好 但是它实现起来较为麻烦 Canny 算子是 一个具有滤波 增强 检测的多阶段的优化算子 在进行处理前 Canny 算子 先利用高斯平滑滤波器来平滑图像以除去噪声 Canny 分割算法采用一阶偏导 的有限差分来计算梯度幅值和方向 在处理过程中 Canny 算子还将经过一个 非极大值抑制的过程 最后 Canny 算子还采用两个阈值来连接边缘 Canny 边缘检测算法 step1 用高斯滤波器平滑图象 step2 用一阶偏导的有限差分来计算梯度的幅值和方向 step3 对梯度幅值进行非极大值抑制 step4 用双阈值算法检测和连接边缘 具体内容 具体内容 1 Canny 边缘检测基本原理边缘检测基本原理 1 图象边缘检测必须满足两个条件 一能有效地抑制噪声 二必须尽量精确 确定边缘的位置 2 根据对信噪比与定位乘积进行测度 得到最优化逼近算子 这就是 Canny 边缘检测算子 3 类似与 Marr LoG 边缘检测方法 也属于先平滑后求导数的方法 2 Canny 边缘检测算法 边缘检测算法 step1 用高斯滤波器平滑图象 step2 用一阶偏导的有限差分来计算梯度的幅值和方向 step3 对梯度幅值进行非极大值抑制 step4 用双阈值算法检测和连接边缘 step1 高斯平滑函数高斯平滑函数 step3 非极大值抑制非极大值抑制 仅仅得到全局的梯度并不足以确定边缘 因此为确定边缘 必须保留局部 梯度最大的点 而抑制非极大值 non maxima suppression NMS 解决方法 利用梯度的方向 step4 用双阈值算法检测和连接边缘用双阈值算法检测和连接边缘 对非极大值抑制图像作用两个阈值 th1 和 th2 两者关系 th1 0 4th2 我们 把梯度值小于 th1 的像素的灰度值设为 0 得到图像 1 然后把梯度值小于 th2 的像素的灰度值设为 0 得到图像 2 由于图像 2 的阈值较高 去除大部分噪音 但同时也损失了有用的边缘信息 而图像 1 的阈值较低 保留了较多的信息 我们可以以图像 2 为基础 以图像 1 为补充来连结图像的边缘 链接边缘的具体步骤如下 对图像 2 进行扫描 当遇到一个非零灰度的像素 p x y 时 跟踪以 p x y 为开始点的轮廓线 直到轮廓线的终点 q x y 考察图像 1 中与图像 2 中 q x y 点位置对应的点 s x y 的 8 邻近区域 如果在 s x y 点的 8 邻近区域中有非零像素 s x y 存在 则将其包括到图像 2 中 作为 r x y 点 从 r x y 开始 重复第一步 直到我们在图像 1 和图像 2 中都无 法继续为止

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论