



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 1 22 1 2 指数函数及其性质 指数函数及其性质 3 3 从容说课从容说课 指数函数作为一类基本的初等函数 同时也是与我们生活联系比较密切的函数模型 它虽然不具有函数的通性中的奇偶性 但它却可以和其他的初等函数复合在一起构成具有 比较复杂的单调性的函数 同时也可以复合出一些比较特殊的奇函数和偶函数 讨论含有指数式的比较复杂的函数的单调性和奇偶性是本课的教学重点 将讨论复杂函 数的单调性 奇偶性问题转化为讨论比较简单的函数的有关问题以及在解决具体实际问题 中目标函数模型的确立 目标函数的定义域的确立是本课的教学难点 判断复合函数的单调性时常按照定义进行 并且首先要判断定义域是否关于原点对称 有时也可将所给函数转化为两个或多个基本初等函数的复合函数 进而通过讨论每个基本 初等函数的单调性确定所求复合函数的单调性 判断复合函数的奇偶性时 往往要进行通分 这样可以得到比较对称的形式 同时在 证明函数的单调性或求函数的值域时往往要进行常数分离 另外 结合图形往往使得解题更加的简单 特别是在分析题目时 图形有助于我们的 思考 找到解题思路 解决具体实际问题时 为了更快 更准确地确定目标函数模型 可以先由特殊的情况 开始 多列举几种情形 分析 观察 寻找其中的规律 确立目标函数模型 同时也应根 据具体问题的实际意义确定函数的定义域 三维目标三维目标 一 知识与技能 1 能根据指数函数的性质解决有关函数单调性 奇偶性的讨论问题 2 注意指数函数的底数的讨论 二 过程与方法 1 通过师生之间 学生与学生之间的互相交流 使学生成为一个会与别人共同学习的 人 2 通过探索比较复杂函数与简单初等函数的关系 培养学生的利用化归思想解决问题 的能力 三 情感态度与价值观 1 通过讨论比较复杂的函数的单调性 奇偶性 使学生感知知识之间的有机联系 感 受数学的整体性 感受并体会数学中的化归思想的巨大作用及其在生活中对处理生活琐事 的指导作用 激发学生的学习兴趣 2 在教学过程中 通过学生的相互交流 增强学生数学交流能力 合作学习的能力 同时培养学生倾听 接受别人意见的优良品质 教学重点教学重点 讨论含有指数式的比较复杂的函数的单调性和奇偶性 教学难点教学难点 将讨论复杂函数的单调性 奇偶性问题转化为讨论比较简单的函数的有关问题 教具准备教具准备 多媒体课件 投影仪 打印好的作业 教学过程教学过程 一 复习旧知 复合函数 y f g x 是由函数 u g x 和 y f u 构成的 函数 u g x 的值域应 2 是函数 y f u 的定义域的子集 在复合函数 y f g x 中 x 是自变量 u 是中间变量 当 u g x 和 y f u 在给定区间上增减性相同时 复合函数 y f g x 是增函数 增 减性相反时 y f g x 是减函数 二 创设情景 引入新课 师 我们已经比较熟练地掌握了指数函数的图象和性质 并运用这些知识解决了一些 具体的问题 我们知道指数函数 y ax是非奇非偶函数 那么含有指数式的函数 如 y 有奇偶性吗 110 110 x x 这就是我们这一节课所要研究的内容 三 讲解新课 一 例题讲解 例 1 当 a 1 时 判断函数 y 是奇函数 1 1 x x a a 师 你觉得应该如何去判断一个函数的奇偶性 生口答 师生共同归纳总结 方法引导 判断一个函数奇偶性的一般方法和步骤是 1 求出定义域 判断定义域是否关于原点对称 2 若定义域关于原点不对称 则该函数是非奇非偶函数 3 若所讨论的函数的定义域关于原点对称 进而讨论 f x 和 f x 之间的关系 若 f x f x 则函数 f x 是定义域上的偶函数 若 f x f x 则函数 f x 是定义域上的奇函数 若 f x f x 且 f x f x 则函数 f x 在定 义域上既是奇函数又是偶函数 师 请同学们根据以上方法和步骤 完成例题 1 生完成引发的训练题 通过实物投影仪 交流各自的解答 并组织学生评析 师最 后投影显示规范的解答过程 规范学生的解题 证明 由 ax 1 0 得 x 0 故函数定义域为 x x 0 易判断其定义域关于原点对称 又 f x f x 1 1 x x a a xx xx aa aa 1 1 x x a a 1 1 f x f x 函数 y 是奇函数 1 1 x x a a 合作探究 此题是函数奇偶性的证明 在证明过程中的恒等变形用到推广的实数指 数幂运算性质 请思考 证明 f x f x 的目标指向能否更加简单 如改证 f x f x 0 或者 1 以上两种处理方式何时用何种形式能够使得解题过 xf xf 程更加简洁 例 2 求函数 y 的单调区间 并证明之 2 1 xx2 2 3 师 证明函数单调区间的方法是什么 生口答 师生共同归纳总结 方法引导 1 在区间 D 上任取 x1 x2 2 作差判断 f x1 与 f x2 的大小 化 成因式的乘积 从 x1 x2出发去判断 3 下结论 如果 f x1 f x2 则函数 f x 在区间 D 上是增函数 如果 f x1 f x2 则函数 f x 在区间 D 上是减函数 解 在 R 上任取 x1 x2 且 x1 x2 则 1 2 y y 1 2 1 2 2 2 2 2 2 1 2 1 xx xx 2 1 12 2 1 2 1 22xxxx 2 1 2 1212 xxxx x1 x2 x2 x1 0 当 x1 x2 1 时 x1 x2 2 0 这时 x2 x1 x2 x1 2 0 即 1 1 2 y y y2 y1 函数在 1 上单调递增 当 x1 x2 1 时 x1 x2 2 0 这时 x2 x1 x2 x1 2 0 即 1 1 2 y y y2 y1 函数在 1 上单调递减 综上 函数 y 在 1 上单调递增 在 1 上单调递减 合作探究 在填空 选择题中用上述方法就比较麻烦 因此我们可以考虑用复合函数 的单调性来解题 如下例 例 3 求函数 y 3的单调区间和值域 32 2 xx 师 请同学们分析观察所给函数有什么特点 这些特点会给你解答该题提供哪些信息 生讨论交流 师捕捉学生交流具有价值的信息 及时归纳 得出如下结论 结论 所给函数解析式右边是指数式 指数式的指数又是一个关于自变量x 的二次 三项式 师 以上结论能否为你解决该问题提供一点思路呢 生交流 师总结 由以上结论想到 若设 u x2 2x 3 则 y 3u 这样原来一个比较复杂的函数单调性 的讨论问题就转化为两个基本初等函数的单调性的讨论问题 师生共同完成解答 师规范板书 解 由题意可知 函数 y 3的定义域为实数 R 32 2 xx 设 u x2 2x 3 x R 则 f u 3u 故原函数由 u x2 2x 3 与 f u 3u复合而成 f u 3u在 R 上是增函数 而 u x2 2x 3 x 1 2 4 在 x 1 上是增函数 在 1 上是减 函数 y f x 在 x 1 上是增函数 在 1 上是减函数 又知 u 4 此时 x 1 4 当 x 1 时 ymax f 1 81 而 3 0 32 2 xx 函数 y f x 的值域为 0 81 方法引导 在讨论比较复杂的函数的单调性时 首先根据函数关系确定函数的定义域 进而分析研究函数解析式的结构特征 将其转化为两个或多个简单初等函数在相应区间上 的单调性的讨论问题 在该问题中先确定内层函数 u x2 2x 3 和外层函数 y 3u 的单 调情况 再根据内外层函数的单调性确定复合函数的单调性 四 巩固练习 1 已知函数 f x 12 12 x x 1 判断函数 f x 的奇偶性 2 求证 函数 f x 在 x 上是增函数 2 讨论函数 y 3的单调性 并指出它的单调递增区间和单调递减区间 632 2 xx 答案 1 1 函数 f x 为奇函数 2 根据单调性的定义进行证明 证明过程略 2 单调递减区间为 单调递增区间为 4 3 4 3 五 课堂小结 1 复合函数单调性的讨论步骤和方法 2 复合函数奇偶性的讨论步骤和方法 六 布置作业 1 已知 f x 2x 1 当 a b c 时 有 f a f c f b 则下列各式中正 确的是 A 2a 2c B 2a 2bC 2 a 2cD 2a 2c 2 2 已知函数 f x ax k 的图象过点 1 3 又其反函数 f 1 x 的图象过点 2 0 则 f x 3 已知偶函数 f x 的定义域为 R 当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025办公设备采购(购买)合同书
- 借款协议委托借款协议
- 行业岗位能力要求试卷
- 2024届江苏省南通市高三第四次模拟考试-地理试题 (解析版)
- 2024-2025学年山西省晋城市部分学校高一下学期开学地理试题(解析版)
- 2025企业解除合同协议书
- 2025合同样本企业员工劳动合同书 范本
- 2025木材及木制品买卖合同示范文本
- 2025年度股东股权质押合同
- 流量计的选型步骤
- 二次供水工程技术规程(CJJ140—2010 )
- 户口本翻译件
- 脑梗死标准病历、病程记录、出院记录模板
- 整车数据展示,汽车设计资料
- 加芯搅拌桩技术规程 YB-2007
- 高支模专项施工方案(专家论证通过
- (修编)福建省农村公路设计标准化指南
- 电力电缆尼龙12护套挤制工艺的探讨
- 爱丁堡产后抑郁量表
- 制浆造纸行业工艺流程
- 欧派家居集团新材料(产品)鉴定试用管理规定
评论
0/150
提交评论