八年级数学暑假专题—四边形综合提高人教版_第1页
八年级数学暑假专题—四边形综合提高人教版_第2页
八年级数学暑假专题—四边形综合提高人教版_第3页
八年级数学暑假专题—四边形综合提高人教版_第4页
八年级数学暑假专题—四边形综合提高人教版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用心 爱心 专心1 一 教学内容 四边形综合提高 1 分析本章的重点 难点 将知识成网络 2 举例说明近几年中考中有关的开放性试题 3 介绍学好数学的学习方法 二 教学过程 知识掌握知识掌握 知识点精析知识点精析 一 本章内容的重点是平行四边形的定义 性质和判定 1 定义的重要性 因为定义揭示了概念的本质特征 根据平行四边形的定义 必须掌握两层意思 一个四 边形只要具备 两组对边分别平行 的条件 那么这个四边形就是平行四边形 反过来 一 个四边形如果是平行四边形 那么这个四边形必定是 两组对边分别平行 所以 平行四边 形的定义和其他数学概念的定义一样 兼有判定 上面说的第一层意思 和性质 上面说的 第二层意思 的作用 其实 对任何一个数学中的定义都应该从这两方面去理解 这样才有 助于培养自己正向思维和逆向思维的能力 2 研究平行四边形性质的基本方法 连结平行四边形的一条对角线 将平行四边形分成两 个全等三角形 这就与三角形联系起来了 在这种联系之下 可以实现两个 转化 一是 化新为旧 二是化难为易 因此 在学习平行四边形时 要一抓 核心 定义 二抓 联 系 对角线 问题就好解决 其次是梯形问题解法的基本思路 解决梯形问题的基本方法是通过添辅助线 把梯形分成平行四边形和三角形 转化为已 经熟悉的四边形和三角形问题 二 本章难点是平行四边形与各种特殊平行四边形之间的联系与区别 也是重点 突破难点 的关键是学好概念 分清 特殊 和 一般 的关系及特殊平行四边形之间的从属关系 建议 1 学概念 抓 限制 画网络 一目了然 建议 2 学性质 抓 特性 识共性 一通百通 这里要特别注意 用特殊平行四边形性质时 别忘了它们都是平行四边形 例如 平行 四边形是中心对称图形 而菱形 矩形 正方形是特殊的平行四边形 所以它们当然也是中 心对称图形 但是它们又具 特殊性 建议 3 学判定 抓 起点 凑条件 缺一不可 这里要说明的是 特殊的平行四边形矩形 菱形 正方形的判定方法有两类 一类的 起点 是平行四边形 即 平行四边形 特殊条件 另一类的 起点 是四边形 即 四 边形 特殊条件 更为特殊的是正方形 它的 起点 还可以是矩形 菱形 即 矩形 特 殊条件 菱形 特殊条件 在应用判定方法时一定要分清在什么基础上进行 条件要凑够 才行 用心 爱心 专心2 三 学法指点 1 梳理知识构成系统 把本章所有知识编织成有机联系的网络 把握各种四边形之间的从属关系 确切掌握它 们的共性和特性 以便随时调取信息 为正确理解和运用知识解决问题打下基础 2 学习运用科学思维方法 1 一般到特殊 2 转化 的数学思想 化四边形为三角形 化新问题为旧问题 化难为易 多边形 四边形 梯形 平行四边形 D E A C A 矩形 B 菱形 C 正方形 B 3 解题后要反思 总结规律 如总结解决梯形问题时添加辅助线的方法 解题方法指导解题方法指导 熟练掌握本章的基础知识是解题的关键 例 1 2006 年上海市中考题 在下列命题中 真命题是 A 两条对角线相等的四边形是矩形 B 两条对角线互相垂直的四边形是菱形 C 两条对角线互相平分的四边形是平行四边形 D 两条对角线互相垂直且相等的四边形是正方形 答案 答案 C 适当添加辅助线构成基本图形是解题的桥梁 例 2 2006 年福建省厦门市中考题 如图所示 在四边形 ABCD 中 A90 ABC与 ADC互补 1 求 C的度数 2 若BCCD 且ABAD 请在图上画出一条线段 把四边形 ABCD 分成两部分 使得这两部分能够重新拼成一个正方形 并说明理由 用心 爱心 专心3 A D B C 1 解 解 在四边形 ABCD 中 A90 AABCADC C 90180 3609018090 2 过 A 作AE BC 于 E 则线段 AE 把四边形 ABCD 分成 ABE和四边形 AECD 两 部分 把 A 以 A 为旋转中心逆时针旋转 则被分成的两部分重新拼成一个正方形 说明 说明 过 A 作 AF BC 交 CD 的延长线于 F ABCADC ABCADF ADABAECAFD ABEADF AEAF 180 90又 四边形 AECF 是正方形 A F D B E C 例 3 如图所示 梯形 ABCD 中 AD BC B90 ABcm 14 ADcm 18 BCcm 21 点 P 从点 A 开始沿 AD 边向点 D 以1cm s 的速度移动 点 Q 从点 C 开始沿 CB 向点 B 以2cm s 的速度移动 如果点 P Q 分别从点 A C 同时出发 设移动的时间为 t 秒 问 t 为何值时 梯形 PQCD 是等腰梯形 A P D B Q F E C 解 解 过 D 作DE BC 于 E 在梯形 ABCD 中 AD BC B90 ECBCADcm 21183 由题意 AP t CQt PDt 218 用心 爱心 专心4 要使梯形 PQCD 是等腰梯形 过 P 作PF BC 于 F 可证得四边形 PFED 是矩形 EFPDt QFEC QCQFEFEC tt t 18 3 31832 8 秒 答 答 t 为 8 秒时 梯形 PQCD 是等腰梯形 考点突破考点突破 考点指要考点指要 平行四边形及特殊平行四边形 梯形的定义 性质和判定在中考说明中是 C 级知识点 它常与全等三角形综合在一起以选择题 填空题 解答题和论证题等题型出现在中考题中 大约占有 10 分左右 2006 年北京市中考题 大纲卷占 13 分 课标卷占 16 分 且最后一题 是本章的综合知识 近几年 这部分的考题从以往的论证题转向动手操作 发现 猜想和探 究的开放题 典型例题分析典型例题分析 例 1 2001 年山西省临汾市中考题 填空题 观察图所示和所给表格中的数据后 回答 问题 当梯形个数为 n 时 这时图形的周长为 1 2 1 1 1 1 1 2 2 1 梯形个数12345 图形周长58111417 注意图形周长由小到大依次排成的 队伍 5 8 11 14 17 它们从第 2 个数 起 每一个数减去前面一个数所得的差都等于 3 这样就容易发现每个数 站位 的号码与 这个数的关系 设梯形个数为 n 相应的图形周长为an 那么由图可以看出 a15113 用心 爱心 专心5 a a a a 2 3 4 5 5213 5313 5413 5513 an n 513 又 5 1332 nn an n 32 验证这个公式的正确性 531283221133214342 因此 根据图形和表格中的数据得出 当梯形个数为 n 时 这时图形的周长为32n n 为正整数 点评 点评 让 图形 与 数 互动起来 也就是 数形结合 或 数形转化 此题本来是 图形问题 列成表看周长 又变成了数的问题 但在解决问题的过程中 纯粹考虑周长 数 排成的 队伍 这在高中数学中是一个很简单的问题 数列 等差数列 但在初中 要由 一列数看出规律 写出第 n 个图形的周长与 n 的联系 在高中就是求等差数列的通项公式 一种方法就是要把数又转化为图形 就象人比高矮个儿一样 这就是所谓的 类比联想 波 利亚教授指出 类比是发现的另一个丰富源泉 从画出的图中发现了an与 n 的密切关系 因而猜测出a n n 513 通过公式变形及验证n 1 2345 就对这个公式坚 定了信心 严格证明要用到高中的数学归纳法 应用本章的基础知识解决实际生活中的有关问题 例 2 2003 年河北省中考题 已知 如图 直线mn A B 为直线n上的点 C P 为直线m上的点 C P m O A B n 1 请写出图中 面积相等的各对三角形 2 如果 A B C 为三个定点 点 P 在 m 上移动 那么 无论 P 点移动到任何位置 总有 与 ABC的面积相等 理由是 解决问题 如图所示 a 五边形 ABCDE 是张大爷十年前承包的一块土地的示意图 经过多年开垦 荒地 现已变成如图 b 所示的形状 但承包土地与开垦荒地的分界小路 即图 b 中折线 CDE 还保留着 张大爷想过 E 点修一条直路 直路修好后 要保持直路左边的土地面积与 承包时的一样多 右边的土地面积与开垦的荒地面积一样多 请你用有关的几何知识 按张 大爷的要求设计出修路方案 不计分界小路与直路的占地面积 用心 爱心 专心6 E A D B C E N A D M B C a b 1 写出设计方案 并在图 b 中画出相应的图形 2 说明方案设计理由 解析 解析 一个三角形的底和高两个量确定了 三角形的面积也就确定了 因此同底等高的 两个三角形面积相等 解 解 探究规律 1 A ABCBPAOCBOPCPACPB和 和 和 2 ABP 因为平行线间的距离相等 所以无论点 P 在 m 上移动到任何位置 总有 ABPABC与 同底等高 因此 它们的面积相等 解决问题 1 画法如图 c E N A D M B C F H c 连结 EC 过点 D 作 DF EC 交 CM 于 F 连结 EF EF 即为所求直路的位置 2 设 EF 交 CD 于点 H 由上面所得到的结论 可知 SSSS SS SS ECFECDHCFEDH ABCDEABCFE EDCMNEFMN 五边形五边形 五边形四边形 点评 点评 什么是平面图形的等积变形呢 把一个平面图形变成另一个平面图形 使这两个 平面图形的形状不同 但面积保持不变 这种变形叫做平面图形的等积变形 简称为等积变 形 对多边形进行等积变形的理论依据是 等底等高的三角形面积相等 等底等高的平行四 边形面积相等 例 2 2006 年北京市中考题课标卷 我们给出如下定义 若一个四边形的两条对角线相等 则称这个四边形为等对角线四边 形 请解答下列问题 用心 爱心 专心7 1 写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称 2 探究 探究 当等对角线四边形中两条对角线所夹锐角为60 时 这时60 角所对的两边 之和与其中一条对角线的大小关系 并证明你的结论 解 解 1 矩形和等腰梯形 2 结论 等对角线四边形中两条对角线所夹锐角为60 时 这对60 角所对的两边之 和大于或等于一条对角线的长 已知 四边形 ABCD 中 对角线 AC BD 交于点 O ACBD 且 AOD60 求证 BCADAC 证明 过点 D 作DFAC 在 DF 上截取 DE 使DEAC 连结 CE BE 故 EDO60 四边形 ACED 是平行四边形 所以 BDE是等边三角形 CE AD 所以DEBEAC 当BC与 CE 不在同一条直线上时 如图 1 D A O B E F C 图 1 在 BCE中 有BCCEBE 所以BCADAC 当 BC 与 CE 在同一条直线上时 如图 2 A D O E B C F 图 2 则BCCEBE 因此BCADAC 综合 得BCADAC 即等对角线四边形中两条对角线所夹锐角为60 时 这对60 角所对的两边之和大于或 等于其中一条对角线的长 用心 爱心 专心8 模拟试题模拟试题 一 选择题 1 在下列性质中 菱形具有而矩形不具有的是 A 内角和为 360oB 对角相等 C 邻角互补D 对角线平分一组对角 2 正方形具有而菱形不一定具有的性质是 A 对角线互相垂直B 对角线平分一组内角 C 对角线相等D 对角线互相平分 3 下面的命题中 逆命题是假命题的是 A 平行四边形的两组对角分别相等 B 直角三角形斜边上的中线等于斜边的一半 C 矩形的两条对角线相等 D 菱形的两条对角线互相垂直平分 4 顺次连结四边形 ABCD 的各边中点所成的图形是菱形 那么四边形 ABCD 的对角线 A 互相平分B 互相垂直 C 互相垂直平分 D 相等 5 在下列图形中 沿着虚线将矩形剪成两部分 则由这两部分既能拼成平行四边形又能拼 成三角形和梯形的是 6 已知 如 图 梯形 ABCD 中 AD BC AB CD 对角线 AC 与 BD 交于点 O 则图中全等三角形的 对数为 A 1B 2C 3D 4 A D O B C 二 填空题 1 若正方形的边长增加 1 倍 则面积增加 倍 2 如果等腰三角形一腰长为 8 底的长为 10 那么连接这个三角形各边中点所成的三角形 周长为 3 从菱形的钝角的顶点向对边作垂线 若垂线平分对边 则这钝角为 4 正方形的周长为 12 厘米 那么它的面积为 平方厘米 5 若等腰梯形的两条对角线互相垂直 中位线长为 8 721cm 则它的高为 cm 6 如图 点 D E F 分别是 ABC 的 AB BC AC 的中点 连结 DE EF 要使四边形 ADEF 为正方形 还需增加条件 A B C D 用心 爱心 专心9 A D F B E C 7 如图 如果以正方形 ABCD 的对角线 AC 为边作第二个正方形 ACEF 再以对角线 AE 为 边作第三个正方形 AEGH 如此下去 已知正方形 ABCD 的面积 S1为 1 按上述方法所 作的正方形的面积依次为 S2 S3 Sn n 为正整数 那么第 8 个正方形的面积 S8 三 根据要求将下面题目改编为一道新题 已知 如图所示 在等腰梯形 ABCD 中 AD BC PA PD 求证 PB PC 请你将上述题目的条件 在等腰梯形 ABCD 中 AD BC 改为另一种四边形 其余条 件都不变 使结论 PB PC 仍然成立 再根据改编后的题目画出图形 写出已知和求证 并进行证明 四 四边形 ABCD 中 AD BC AD BC BC 6cm P Q 分别从 A C 同时出发 P 以 1cm s 的速度由 A 向 D 运动 Q 以 2cm s 的速度由 C 向 B 运动 几秒钟后 ABQP 是平行四边 形 A P D B Q C 用心 爱心 专心10 五 如图 ABCD 是矩形 把矩形沿直线 AC 折叠 点 B 落在 E 处 连接 DE 从 E 作 EH AC 交 AC 于 H 1 判断四边形 ACED 是什么图形 并加以证明 2 若 AB 8 AD 6 求 DE 的长 3 四边形 ACED 中 比较AEEC 与ACEH 的大小并说明理由 用心 爱心 专心11 试题答案试题答案 一 选择题 1 D2 C3 C4 D5 D6 C 二 填空题 1 42 133 120 4 95 8 721 6 ABAC 且 A907 128 5 8 721 略解 OEBC OFAD 1 2 1 2 hOEOFBCADcm 1 2 8721 B A D E C O F 三 已知 如图所示 在矩形 ABCD 中 PA PD 求证 PB PC 证明 PAPD 12 在矩形 ABCD 中 ABDC BADCDA90 BADCDA12 即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论