初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程.doc_第1页
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程.doc_第2页
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程.doc_第3页
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程.doc_第4页
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六讲 转化可化为一元二次方程的方程 数学(家)特有的思维方式是什么?若从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,若从“转化”这个侧面又该如何回答?匈牙利女数学家路莎彼得在无穷的玩艺一书中写道:“作为数学家的思维来说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题”转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解【例题求解】【例1】 若,则的值为 思路点拨 视为整体,令,用换元法求出即可【例2】 若方程有两个不相等的实数根,则实数的取值范围是( ) A B C D 思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注的隐含制约注:转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化:实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等 解下列方程: (1); (2); (3) 按照常规思路求解繁难,应恰当转化,对于(1),利用倒数关系换元;对于(2),从受到启示;对于(3),设,则可导出、的结果注:换元是建立在观察基础上的,换元不拘泥于一元代换,可根据问题的特点,进行多元代换【例4】 若关于的方程只有一个解(相等的解也算作一个),试求的值与方程的解 思路点拨 先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程的解的讨论,“只有一个解”内涵丰富,在全面分析的基础上求出的值注:分式方程转化为整式方程不一定是等价转化,有可能产生增根,分式方程只有一个解,可能足转化后所得的整式方程只有一个解,也可能是转化后的整式方程有两个解,而其中一个是原方程的增根,故分式方程的解的讨论,要运用判别式、增根等知识全面分析【例5】 已知关于的方程有两个根相等,求的值思路点拨 通过换元可得到两个关于的含参数的一元二次方程,利用判别式求出的值注:运用根的判别式延伸到分式方程、高次方程根的情况的探讨,是近年中考、竞赛中一类新题型,尽管这种探讨仍以一元二次方程的根为基础,但对转换能力、思维周密提出了较高要求 学历训练1若关于的方程有增根,则的值为 ;若关于的方程 曾一1的解为正数,则的取值范围是 2解方程得 3已知方程有一个根是2,则= 4方程的全体实数根的积为( ) A60 B一60 C10 D一105解关于的方程不会产生增根,则是的值是( ) A2 B1 C不为2或一2 D无法确定6已知实数满足,那么的值为( ) A1或一2 B一1或2 C1 D一2 7(1)如表,方程1、方程2、方程3、,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空格处; (2)若方程()的解是=6,=10,求、的值该方程是不是(1)中所给的一列方程中的一个方程?如果是,它是第几个方程? (3)请写出这列方程中的第个方程和它的解,并验证所写出的解适合第个方程序号方 程方程的解1= = 2=4=63 =5=88解下列方程:(1) ;(2);(3);(4)9已知关于的方程,其中为实数,当m为何值时,方程恰有三个互不相等的实数根?求出这三个实数根 10方程的解是 11解方程得 12方程的解是 13若关于的方程恰有两个不同的实数解,则实数的取值范围是 14解下列方程: (1); (2);(3); (4)15当取何值时,方程有负数解? 16已知,求的值 17已知:如图,四边形ABCD为菱形,AF上AD交BD于E点,交BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论