无刷直流电机控制系统的设计及仿真_第1页
无刷直流电机控制系统的设计及仿真_第2页
无刷直流电机控制系统的设计及仿真_第3页
无刷直流电机控制系统的设计及仿真_第4页
无刷直流电机控制系统的设计及仿真_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录 1 前言 1 1 1 无刷直流电机的发展 1 1 2 无刷直流电机的优越性 1 1 3 无刷直流电机的应用 2 1 4 无刷直流电机调速系统的研究现状和未来发展 2 2 无刷直流电机的原理 4 2 1 三相无刷直流电动机的基本组成 4 2 2 无刷直流电机的基本工作过程 5 2 3 无刷直流电动机本体 6 2 3 1 电动机定子 6 2 3 2 电动机转子 7 2 3 3 有关电机本体设计的问题 8 3 转子位置检测 8 3 1 位置传感器检测法 8 3 2 无位置传感器检测法 10 4 系统方案设计 12 4 1 系统设计要求 12 4 1 1 系统总体框架 12 4 2 主电路供电方案选择 12 4 3 无刷直流电机电子换相器 14 4 3 1 三相半控电路 14 4 3 2 三相全控电路 15 4 4 无刷直流电机的基本方程 16 4 5 逆变电路的选择 18 4 6 基于 MC33035 的无刷直流电动机调速系统 19 4 6 1 MC33035 无刷直流电动机控制芯片 19 4 6 2 基于 MC33035 的无刷直流电动机调速系统设计 20 5 无刷直流电机调速系统的 MATLAB 仿真 23 5 1 电源 逆变桥和无刷直流电机模型 23 5 2 换相逻辑控制模块 25 5 3 PWM 调制技术 30 5 3 1 等脉宽 PWM 法 32 5 3 2 SPWM Sinusoidal PWM 法 32 5 4 控制器和控制电平转换及 PWM 发生环节设计 32 5 5 系统的仿真 仿真结果的输出及结果分析 33 5 5 1 起动 阶跃负载仿真 34 5 5 2 可逆调速仿真 36 6 总结和体会 38 无刷直流电机调速控制系统设计无刷直流电机调速控制系统设计 1 1前言前言 直流无刷电机 无机械刷和换向器的直流电机 也被称为无换向器直流电动机 它取代了机械电子换向器电刷和换向器直流电动机来实现 是一个标准的机械和机电 一体化产品 不仅具有结构简单 运行可靠 维修方便交流电机和一系列优点与直流 有刷效率高 无励磁损耗和高速性能 以及许多其他功能的发动机 1 1无刷直流电机的发展无刷直流电机的发展 直流电动机由于其在运动控制领域的卓越扭矩特性已得到广泛应用 与传统的直 流电动机和机械毛刷 可靠性差的需要 减刑会产生电磁干扰 噪声 火花 无线电 干扰和寿命短的致命弱点 具有较高的生产成本和维修问题的严重影响 如联合直流 电动机控制系统的进一步发展的弊端 随着社会生产力 人民生活水平不断提高的发 展 他们不断开发新类型的电机 科学技术的进步 新兴技术和新材料 同时也进一 步推动电动汽车将继续推出新产品 对于传统的直流电机 只要 30 年早在 20 世纪的上述缺点 人们开始开发一个电 子交流始终以取代无刷直流电动机刷机 并提出相应数量的结果 但是 这只是高功 率处于发展的初级阶段的电子设备 没有找到理想的电子换向元件 使这个运动只能 停留在实验室研究阶段 没有推广 1955 年 美国四哈里森 谁首先提出了晶体管使 用该电机接替该专利申请的机械换向器 这是现代无刷直流电动机的原型 但是 因 为没有马达的起动转矩 使其不能成为产品 后来 经过多年的艰苦工作的人 终于 由霍尔元件实现无刷直流电动机换意味着在 1962 年来 创造了直流无刷电机产品的时 代 自 20 世纪 电力电子行业快速发展的 70 年代 许多新的高功率高性能电力电子 器件 如 GTR 的 MOS 管 IGBT 的相继出现 特别是高性能永磁材料等作为钐钴的到 来 使无刷直流电动机 因而被广泛应用于更全面 更奠定了坚实的基础 近 40 年来 随着电动机本体及其相关学科的迅速发展 无刷直流电动机的电子换向直流电动机概 念 发展指的是所有的直流无刷电机与电子交换子的外部特征 无刷直流到从 1978 年 开始实时实际相电机 二十世纪是 80 岁进行了深入的国际研究 先后开发无刷方波和 正弦波无刷直流电机在十年的时间 直流电动机的发展更加迅速 1 2无刷直流电机的优越性无刷直流电机的优越性 直流电动机具有快速响应 大起动转矩 从零速到额定转速 额定转矩可提供的 性能 但直流电机的优点也是它的缺点 因为 DC 额定负载机密生产性能不断转移的时 刻 电枢与转子磁场须保持恒定 90 度 这将用刷子和换向器 碳刷 换向器 继而引 发电机 碳粉 所以除了元件造成损害的 有限的场合使用 交流无碳刷及整流子 免维护 可靠 应用范围广 但直流电机马达的特点 实现同等性能的必须使用复杂 的控制得以实现 今天 功率半导体开关频率成分的快速发展 加快了许多 提升驱 动电机的性能 微处理器的速度也越来越快 使交流电机控制在一个旋转的两轴直角 坐标系放置 适当控制交流电机在两轴电流分量 类似于直流电动机控制和一个相当 大的直流电动机性能 此外 已经有许多微处理器将控制电机必需的功能使芯片 体 积越来越小 像模拟 数字转换器 脉冲宽度调制 直流无刷电机电子换向控制交流电 机 直流电机特性的直流电机相似 身体上没有失踪的应用之一 事实上 无刷直流电机有自己的缺点 包括成本高 难以控制的小型化的复杂性 在某些情况下 这些缺点已成为障碍的无刷直流电动机的发展 目前 电子技术 控 制技术和大规模生产技术是生产技术的发展 逐步解决这些问题 因此 无刷直流电 动机的性能和功能 有望进一步提高 从市场的产品可以看到 最近一些制造商正在 致力于开发高速 高性能的通用汽车 并提供绝对编码器 防爆电机 以扩大产品种 类 虽然无刷直流电动机提供了一批技术领先和广泛的应用范围 但我们可以在所有 应用程序 它是最佳的选择 应用程序或不应该谨慎选择 1 3无刷直流电机的应用无刷直流电机的应用 现在 无刷直流电机应用扩大 如航空航天和军事领域的炮兵雷达 自动定位 船舶舵 飞机自动驾驶仪 全自动控制应用等 范围 在信息处理设备 包括信息输 入 存储 加工 输出 传输和其他部门 时间越长 如微型计算机软盘驱动器 硬 盘驱动器 光盘驱动器 复印机 打印机 传真机等 在视听设备 录像机 录音机 摄像机使用 照相机 光碟 DVD 等 并在同一时间控制其人民的性能要求也不断提高 今天 在各个领域 如医疗器械 纺织 化工 仪器仪表 电脑驱动器及家电的日益 广泛应用等诸多方面 国民经济的发展 就像电脑的硬盘驱动器和软盘驱动器中的主 轴电机 伺服电机在录音机 使用了大量的直流无刷电机 无刷直流电动机在工厂自 动化设备品种也广泛应用于高速或在伺服系统所需的设备和作为该地区的大部分产品 已成为不可缺少的运动的一部分 在许多应用中 它有望取代刷直流伺服电机 然而 由于直流有刷低生产成本 控制 以及其他一些优良特性伺服电机 其需求将继续下 去 1 4无刷直流电机调速系统的研究现状和未来发展无刷直流电机调速系统的研究现状和未来发展 在国内和国外的直流无刷电机技术一般控制是比较成熟 而日本和更先进的制造 直流无刷电机及控制技术美国的所有者 特别是 日本已经变得更突出的民用和军事 方面 美国是比较先进的 无刷直流电机目前的研究重点主要在三个方面 1 无传感 器控制技术的开发 提高系统可靠性 降低了电机的体积和重量 2 由电机设计和控 制方法 本文研究无刷直流电动机转矩脉动的扩大应用 以增加其服务器范围 3 可 靠性和紧凑的设计 集成的无刷直流电动机控制器的多功能性 无传感器控制技术 传统的无刷直流电动机通过位置传感器直接检测转子位置 无传感器控制容易获得 主要是通过电机的电压或电流信号经过一定的算法处理 得 到转子位置信号 也被介绍到转子位置检测方法而闻名 目前的检测方法是 电磁场 归纳法 熔盐法 续流二极管法观察员估计 智能估计方法 电磁场被广泛使用的方法 原理简单 随着传感器控制无刷直流电动机直接起动普遍较为困难 所以一开始就一 直是热点和难点 电磁场的无刷直流电动机转子位置检测启动三阶段方法比较成熟 对从起动电机稳定运行方式可分为三个阶段 定子位置 加速度和切换 其他传感器 控制的电机起动方法 如前位置开始 日益频繁和提高同步起动法检测和短脉冲转子 定位和法国 也有一定的应用 无刷直流电动机控制器 无刷电机控制器 具有相似的发展已经从电器元件的分 立元件到数字可编程控制电路控制发展过程 在一般情况下 使用复杂的控制器设计 大 可靠性差 通用性分立元器件 是不利于大规模生产 时间 当前的无刷直流电 动机控制器 专用集成电路 FPGA 和单片机 DSP 控制器方法的主要用途 电机控制 专用集成电路 是目前较无刷直流摩托罗拉的 MC33035 电机是一种直流无刷电机控制 芯片 MicroLinear 公司 ML4425 4428 传感器控制芯片等 如果我们考虑到控制器的硬 件和软件设计等功能以后 您可以使用控制器的设计与 FPGA 单片机 DSP 等 FPGA 可以利用 VHDL Verilog 或 C 语言编程 灵活性 可与在线系统的静态和动态重新配 置编程功能重复 使得硬件的功能可以编程为相同的软件修改 并且可以根据用户需 求定义界面功能 MCU 和 DSP 有丰富的外设接口 微控制器通常用于简单电机控制系 统中 而 DSP 为一个强大的计算和数据处理能力 往往在智能电机控制系统 关于这个问题的转矩脉动比较复杂 不属于本文的范围 所以没有更多的说明 2 2无刷直流电机的原理无刷直流电机的原理 2 1三相无刷直流电动机的基本组成三相无刷直流电动机的基本组成 直流无刷永磁电动机主要由电动机本体 位置传感器和电子开关线路三部分构成 其定子绕组一般为多相 3 相 4 相 5 相不等 转子由永久磁钢按一定极对数 2p 2 4 组成 下图所示即为三相两极直流无刷电机结构 图 2 1 三相两极直流无刷电机组成 三相定子绕组和电子开关电路 分别在相应的功率开关器件连接的 A B C 三相 绕组与电源开关用 V1 V2 V3 的阶段 跟踪转子位置传感器相连 电机轴 当一相电 源定子绕组 转子电流和所产生的扭矩作用的永久磁铁的两极磁场产生的驱动转子旋 转 那么该位置传感器转子磁铁的位置转换成电信号 以控制电子开关电路 使由一 个特定的顺序交替定子绕组 定子相按一定顺序转子换相位置的变化电流 由于电子 开关电路的使用顺序同步与转子角度 起到了扭转机械换向器的作用 无刷直流电机线是用来控制电子开关电机各相序定子绕组和时间的力量 主要是 由逻辑开关单元 位置传感器信号处理单元两部分权力 权力的逻辑控制电路交换的 单位是电源的核心 它的功能是分配给每个阶段之间的逻辑关系电动机定子绕组 使 电机产生的恒转矩 而每相绕组的顺序和时间依赖于从转子位置传感器信号 不过 按位置传感器产生的信号经过一定的逻辑去控制电源开关通过 总之 对直流无刷电 机的主要部件组成 如图 2 2 所示 电机本体 无 刷 直 流 电 机 电子开关电路 位置传感器 主定子 主转子 传感定子 传感转子 功率逻辑开关 位置信号处理 图2 2 无刷直流电机的组成框图 总结告诉我们 通常称为无刷直流电机的基本结构 可以被看作是由电子开关 电机位置传感器的身体和运动系统三部分组成的电路 简化的组成框图如图 2 3 所示 直流电源开关电源电动机 位置传感器 图 2 3 无刷直流电机简化的组成原理框图 2 2无刷直流电机的基本工作过程无刷直流电机的基本工作过程 转子位置图 2 1 和图 2 4 一 对应的位置显示 此时光电子器件是因为 VP1 的光 线 使 V1 的是功率晶体管导通状态 电流流入绕组机管局 转子磁极绕组与从转子的 磁图三箭头极方向产生转矩电流的作用 旋转 当转子磁极图 2 4 b 所示的位置 直接旋转式转子轴也跟着由同步遮光板转动 病毒 VP1 和 VP2 的照射覆盖离开 这样 在晶体管 V1 和 V2 的铅晶体管通 从绕组的绕组 BB 心跳过流入 机管局 使转子磁极 旋转朝着箭头方向的电流 当转子磁极图 2 4 c 所示的位置 然后旋转图案已经覆 盖病毒 VP2 VP3 的是如此的照射下 在晶体管产生的 V2 和 V3 的导通晶体管 在绕组 CC 的电流流过 然后继续以顺时针方向驱动转子磁极 并返回到图 2 4 d 职称 因 此 随着转子的旋转位置传感器芯片领域 在定子绕组位置传感器病毒 VP1 VP2 基因 下一个阶段一个阶段的控制 美联储将在瞭望为了实现相绕组电流换向 在减刑过程 中 每个阶段的工作中内的空气旋转磁场形成的差距是定子绕组的飞跃 这旋转 360 度电角度磁场 磁场内有三个状态 磁状态持续每个角度 120 度 每相绕组电流和转 子磁场之间的关系如图 2 4 图 2 4 a 是第一个状态 对于绕组机管局由人造纤维 生产电力法 显然 转子绕组电流和磁场相互作用 转子顺时针方向旋转 转身 120 度 电角度后 进入第二个状态 然后缠绕机管局的权力 和 BB 以及电源 即在定子产生 的磁场蜿蜒 120 度的大转弯 如图 2 4 所示 b 所示 电机定子顺时针方向旋转 分 120 度电角度 我们进入第三国 然后缠绕 BB 的权力 CC 的电力 产生的磁场由定子 绕组已转向 120 度电角度 如图 2 4 c 所示 它继续推动转子匝 120 后恢复到初始 状态功率度顺时针角度 图 2 5 显示了每个绕组的相图的顺序传导 a b c d 图 2 4 开关顺序及定子磁场旋转示意图 图 2 5 各相绕组的导通示意图 2 3无刷直流电动机本体无刷直流电动机本体 2 3 12 3 1 电动机定子电动机定子 无刷直流电动机通过定子是由许多硅层和轴向冲压 红槽都有一些绕组的线圈形 式 从传统意义上讲 无刷直流电动机定子感应电动机定子和有些类似 但在定子绕 组分布有所不同 无刷直流电动机的定子绕组有三种大多数行是明星 每个绕组和许 多钢构件按照内部整合 具有一定的方式 一个约一磁极偶数形成了定子绕组均匀分 布 直流有刷与无刷直流比绕组在电机定子一侧传统电机 更利于散热 电枢绕组 可直接连接或 如图 2 6 所示 但考虑到系统的性能和成本 获得更多的应用 也 没有中性点对称的三相无刷直流电动机的线索 图 2 6 绕组形式 无刷直流电动机定子绕组可分为梯形和正弦绕组两种 它们的根本区别在于不同 的绕组连接以使它们产生的反电动势 EMF 的不同 梯形和正弦波人出席 所以使用 这个名字 梯形和正弦绕组反电势产生由图 2 7 所示的波形 本文认为正弦永磁同步 电机是电机绕组 图 2 7 a 梯形绕组的反电势波形 b 正弦绕组的反电势波 形 可想而知顺利正弦波清盘它 并作为一个相对比较适合的梯形线圈数目稳定运行 然而 正弦绕组线圈作出更多的梯子上的铜绕组线更相对的使用 以及控制方法也大 大高于梯形波电机复杂 因此 电机的运行速度非常高的精度不高的场合 梯形波无 刷直流电动机这是一个非常合适的选择 2 3 22 3 2 电动机转子电动机转子 无刷直流电机转子与 N 极和围绕着的转子 内转子式 的组成根据 S 极交替 2 8 永久磁铁对 如果外转子式永磁无刷直流电机是连接到转子墙壁上 当前转子钕铁硼 永磁多采用高矫顽力 高剩磁感应强度稀土永磁材料生产 永磁无刷直流电机转子刷 直流电动机类似用磁石 创造了在电机气隙磁场足够 只是在反安装的形式 转子结 构 有三种常见形式 1 表面胶极点 也称为 W 形磁极已知 在外面的瓦形稀土永磁径向磁化核心 粘贴 如果电机设计过程中采用径向瓦形磁体的磁激发弧宽度和取 120 多个 电度 可产生气隙磁通密度的方波形式 减少了转矩脉动 多转子无刷直流电动机采用这种 结构 2 嵌入式极点 也被称为矩形柱 是嵌在一个长方形的永久磁铁的核心 其 优势是非常下 从两极由邻居提供并行通量的聚合物可提供磁效应更大的流量 但这 种结构需要进行一次磁化不锈钢轴 3 圆形磁场核心 是一个整体 外套稀土永磁环和一个多极径向磁化环形磁铁 的特殊方法 这种对转子制造工艺结构是相对较小的尺寸和电机功率简单 2 3 32 3 3 有关电机本体设计的问题有关电机本体设计的问题 定子和转子无刷直流电机本体的统称 车身结构和永磁同步电动机相似 但没有 其他笼绕组和起动装置 定子绕组一般制成多相 三相 四相没有相应的较自由以不 超过一台电机 是比较少见 由永磁转子 形成了极对若干人 电动机本体的设计是一个非常复杂的过程 其基本任务是根据给定的等级和基本 技术性能要求 选择合适的材料 确定了电网电机零件尺寸 并计算其性能 以满足 在材料的储蓄 制造方便 性能良好的要求 获得更大的经济效益 本体设计了许多 内容 包括电磁设计 结构设计 施工设计和工艺设计 本文只对极的讨论 这背后 的模拟有很大的影响数选择简要介绍 极数的选择应考虑性能和经济指标 下图显示的两极 四极 八极和 p 值 1 2 4 在无刷直流电机转子体结构图 图 2 8 本体机构示意 一般在 P 极对数的增加 可以减少每极 定子轭和基地横截面积通量可以相应降 低 从而减少了电机铁量 终止定子绕组的一部分 将增加与减少极数 因此 相同的 电流密度 降低绕组铜量 的极点在定子绕组电感相应减少 数量增加有利于电子设备 减刑 此外 当极数的增加 制造过程的复杂性已经改变 极数的增加 考虑到漏磁不 能过于极端 极弧系数下降 使电机原材料的利用率下降 增加极数相同 速度 电子 设备在减刑数量增加 从而增加了减刑的损失 当电流密度为常数 铜消费在大多数 年份定子绕组的数量增加 通用汽车与极数增加了效率 因此 合理选择根据电机的 极对的需要 3 3转子位置检测转子位置检测 无刷直流电动机采用了传统结构的结构永磁同步电机直流电机代替 所以有必要 逆变器和转子位置检测装置的结构 以实现 换相 的过程 转子位置检测方法主要 分为两类 3 1位置传感器检测法位置传感器检测法 在位置传感器无刷直流电动机转子磁检测在剧中杆位 为逻辑开关电路提供关于 减刑的作用正确的信息 转子磁极位置信号转变为电信号会 然后到控制定子绕组换 向 绕组换向 位置传感器的种类很多 目前常用的无刷直流磁位置传感器 光电传 感器 磁位置传感器和旋转变压器的电动机 磁位置传感器是用于测量转子位置的电磁效应 也有开口变压器 铁磁谐振电路 接近开关电路和其他类型 它具有产量大 环保要求等质量可靠 寿命长的优点 但 更大的传感器 低信噪比 而其用于交换 为整流器一般需要 使用前过滤器的输出 波形 光电位置传感器是利用光电效应在与阴影部分和固定源和其他组件的转子旋转 有绝对编码器和增量编码器之分 它具有精度高 成本低 易加工等特点 而是有能 力适应穷人需要添加整形电路输出信号处理恶劣的环境 磁位置传感器是半导体的一些电气参数的使用传感器按照一定的规则与周围磁场 变化的原理制成 霍尔元件 磁电阻和磁二极常见的类型 在一般情况下 环境适应 性强 输出信号好 成本低 但精度不高 一般来说 在多相位电机控制用变压器 它可以输出多个位置信号 以满足多相 位电机控制的要求 但安装是不容易的 价格比较昂贵 平均三相无刷直流电机解析 很少 霍尔传感器是基于霍尔效应原理制成 霍尔效应是指当在一个磁场电源导体 磁场力使导体的电荷会引导身体方共同努力 当通电时 薄板在磁场中的这种作用更 加明显导体 从而使的聚集一侧的导线将抵消收费 磁场效应 由于在指挥方收取的 聚集 使得对导体两端电压 这种现象称为霍尔效应 霍尔在 1879 年发现的高血压这 一现象 它被命名为 可根据对四端霍尔效应的半导体元件的原则 2 组输出霍尔电 压输出 两个控制端的输入控制电流 霍尔的实际厚度很薄 无论是在它几微米 从 大厅的结构 它几乎是生产和半导体元件 目前 由霍尔元件的硅制造技术成熟 生 产大批量 低价格 性能合适 但不那么广泛的应用 砷化镓霍尔元件制成的最佳性 能 但是高昂的价格限制了应用 当在磁场的变化 大小和霍尔电动势的方向发生相应的变化 使反应发挥作用 霍尔传感器位置的元素的位置 由霍尔元件产生的力不够大 往往在一个外部放大器 这是非常方便的应用 随着半导体集成技术的发展 将霍尔元件和放大器电路往往集 成在一个单芯片 形成了霍尔集成电路 其结构如下所示 图 3 1 霍尔集成电路 这是一个简单的开环放大器驱动输出级 大厅的功能型 开关型线性集成电路分 为二 一般位置传感器无刷直流电动机应选择开关类型 霍尔元件在电机的固定位置放置 霍尔元件安装在定子是更为复杂 因为如果不 放置位置和转子的磁场时 霍尔元件切线可能导致响应可以精确的测量当前位置不转 子在上述原因 为了简化 通常在转子上的磁铁设计 磁感应霍尔元件冗余 安装电 机霍尔元件的安装 这样可以起到和转子磁传感器同样的效果 一般遵循霍尔元件的 周长在印刷电路板上放置和覆盖的监管 使用户可以根据磁场的方向是很方便的调整 霍尔元件的位置 它在最佳状态 在霍尔元件的位置 有 60 度 120 度 240 度等多 种形式 3 2无位置传感器检测法无位置传感器检测法 无位置传感器无刷直流电动机控制技术的热点 许多国内和国外都进行了这项研 究的学者之一 并已取得初步成效 无位置传感器无刷直流可靠性高 抗干扰能力强 等 电机控制 同时模式中的地位在一定程度上克服了转矩脉动传感器的安装所造成 的误差 无传感器控制的发展是因为有限额的位置传感器无刷直流应用程序 这主要体现 在某些情况下电机 1 将感应器可能导致马达尺寸增大 2 之间的电机及控制系统线位置传感器的增加 使系统容易受到外界的干扰 3 位置在高温 高压和高湿度等恶劣的工作条件下 变化的灵敏度 降低了系 统运行的可靠性传感器 4 精度高 机械安装阶段误差不准确造成了一个关于汽车性能有直接影响手术 的安装位置传感器 因此 传感器控制越来越多的关注 同时具有检测 控制技术和 完善的高性能微控制器的手段 无传感器控制技术得到了迅速发展 一些技术已经实 用化 根据不同的原理测试 直流无刷电机无传感器控制方法包括电磁场 磁法 归 纳法 人工智能 头发等 在无传感器控制方法多样 反电动势的方法是最成熟的技术 有能力的最广泛使 用的检测方法 通过这种方法得到将检测反电动势零六个离散信号的延迟信号 逻辑 开关电路提供了正确的信息相 30 度电角度的转子位置 从而实现无位置传感器无刷直 流电动机 无刷直流电动机的反电动势过零点与相应的对易关系点 如图所示 图 3 2 反电动势控制原理 还有一个考虑 当电机转速较低时 反电动势会比较小 过零检测电路不能正常 检测 因此很难实现自启动马达造成的 确定转子无刷直流电机控制系统的初始位置 是稳定的基础 开始对系统的直接影响最大的起动转矩和最小启动时间 目前 无位 置传感器控制算法 转子的估价方法主要电感的初始位置 归纳法在通过特殊的短脉 冲注入电压的定子绕组 然后在一定的时间间隔 以确定各绕组之间的电感电流响应 大小 初始位置之间的差异来确定电感电机 大量的永磁磁阻绕组电感小 电感的计 算方法来确定初始转子位置和大电流的精确测量的需要 另一个转子 由绕组通电法 特定项目的位置 电机转子固定在预定位置 这将转换一个未知的转子立场是众所周 知的 转子定位方法使用简单 但在整个启动过程中 未知前开始的转子初始位置 电机期间可能出现的反向电流高 定位 防启动本方法电位控制方法有 三步启动法 预位起动法或频率升压同步起动法 电压插 Start 方法 无传感器控制方法可以简化生产成本的节约 此外 霍尔元件的移除 如汽车 都可以在比较大的灰尘和油安装更恶劣的工作 而不需要确保大厅条件下正常工作时 间来清除在同一时间 这免维护电机也可安装在一个很难到达的地方 4 4系统方案设计系统方案设计 4 1系统设计要求系统设计要求 1 通过可编程控制器 专用芯片和微处理器几种不同的分析和方案的性能比较 控制 建立了数字信号处理器 DSP 作为无刷直流伺服电机控制系统解决方案的核心集 2 从性能和实用性的角度 为核心的数字信号处理器 具有模块化和数字化设 计 一个基于 DSP 的无刷直流电动机控制系统的建立进行 3 扭矩的无刷直流电动机 位置检测 并开始从硬件和软件的问题 纹波了相 应改善 4 在无刷直流电动机的结构 原理及数学模型分析的基础上 我们使用 Matlab 的无刷直流电动机控制系统建模和仿真 仿真结果的分析 4 1 14 1 1 系统总体框架系统总体框架 该设计的目的是无位置传感器无刷直流电动机控制系统 该系统的工作原理如下 有效的反馈对正常的反电动势检测电路的三相逆变器的转速信号通过 ADC 转换模块 测试信号输入微处理器的速度 计算的结果进行比较 参考速度是速度误差信号 由 控制器参考电流的速度获得 而从目前的样本 通过控制电流控制器输出的 PWM 脉冲 相应的三相逆变器控制控制装置关闭桥的时间和顺序 以实现无刷直流电动机速度和 转矩控制 闭环控制系统采用双层结构 其框图如图 4 1 所示 速度控制器电流控制器PWM 发生器三相逆变器 速度计算 位置控制 信 号 ADC 模块反电动势检测 BLD CM 电流采样 速度反馈 参考 电流 参考速度 图 4 1 无刷直流电机控制系统原理图 4 2主电路供电方案选择主电路供电方案选择 图 4 2 显示了电网电压一般为三相交流逆变桥直流电源设备通常是由交流电网驱 动是由二极管整流器和滤波大电容使用 以便获得一个恒定的直流电压 而电感性负 载电容的无功功率的能量存储缓冲区 图 4 2 直流电源设计原理图 图 4 3 三相桥式不控整流电路原理图 基于 PWM 变换器的滤波电容 其作用除了滤波 也有电机刹车时的运行系统中的 作用动能吸收 由二极管整流直流电源供应不能背面的电源 马达刹车已收取的滤波 电容 这将增加电容两端的电压 称为 泵升电压 电力电子设备限制了最大泵压电压上升 所以能不能非常小 通常的发电能力为 速度控制系统 需要成千上万的微几千瓦 在大容量或负荷较大的系统的惯性不能依 靠泵电容来限制电压上升 那么 在图 4 4 可以用于镇流电阻消耗的动能的一部分 由电压并联电路开关器件允许在泵的价值时 连接上升 图 4 4 泵升电压限制电路原理图 由于这种设计 电路仿真 Simulink 在电力系统模型库 电气系统模块库 模型 库的 MATLAB Simulink 仿真平台 提供直流 交流电源模块的结果 因此模拟电路 设计 直流电源 可直接三个阶段中使用 而不是不可控整流的直流电源 4 3无刷直流电机电子换相器无刷直流电机电子换相器 一般直流电动机 电枢绕组设备有一个到另一个分支类型 电流和电动势元素分 公司必须改变方向 绕组分力的方向转变 由蜿蜒的旋转电枢侧的组成要素依次切割 定子磁极 N 极和 S 直接 蜿蜒曲折 通过改变刷到设备和元件的方向改变当前整流器 组成的机械 设备 来完成 直流电压为的是有一些人存在的一般性缺点消除电机电子开发的 而不是机械的 无刷直流电机换相换向 基本上是由电动马达的身体 电源开关的主电路和转子磁极 位置传感器由三部分组成的闭环系统 在这里 被称为无刷直流电动机的基本制度 该电源开关电路 转子位置传感器及相关电子电路的基本制度结合在一起的电机换向 器 其主要职能是确保在操作过程中的无刷直流 定子和转子磁场电机基本上正交既 提高经营业绩 位置传感器 电源开关已在上一节所述 所以这里只涉及到无刷直流电动机定子 绕组换相之间的方法和特点 作为无刷直流电动机定子绕组最 各种连接定子三相绕 组 以突出的三相绕组 4 3 14 3 1 三相半控电路三相半控电路 通用三相半桥式驱动电路如图 4 5 这 La Lb Lc 分别是 A B C 三相绕组 为 T1 T2 因为这些设备都连接到电机相绕组功率 T3 航站楼 转子位置由 Ha Hb Hc 传感器信号 经放大后开始 然后控制电机功率器件换向 在减刑的过程中 空气中 的差距形成的旋转磁场每个阶段的定子绕组是在一个电源周期 每 120 相位角的飞跃 因此 三相半桥式无刷直流电动机驱动器用于驱动元件少 成本低 简单的控制系统 控制 但扭矩的波动 电机绕组的使用率偏低的使用 每个绕组通电的 1 3 的周期 时间 转矩波动 Tm 2 作业流程 Tm 和无刷直流电机需要的电源线导致中性线 以 及控制反转是比较困难的 因此 在实际应用中较少使用的驱动程序 图 4 5 三相半桥式驱动电路 4 3 24 3 2 三相全控电路三相全控电路 图 4 6 全控桥电路 图 4 6 是一个完全控制的电桥电路 电机绕组为 Y 连接 为六管 MOSFET 的功率器 件 从绕组切换的目的 他们的传导方式可分为两到三三传导传导两种方式 1 两电之间的每一刻是另两个功率器件关 每 1 6 的换向周期 一旦一个功率晶 体管 每个阶段 每个功率管转 120 度角的功率器件换流的方法 T1 和 T2 的功率晶 体管 T1 的轮流缠绕管道 然后从由 T2 的背面的电源绕组 C 相上进行的 从 A 相电流 流动 如果到由绕组电流产生的扭矩设定为正 从绕组的电流产生的负面扭矩 其合 成转矩 钽的大小 当电动机转动 60 度角 由在 T1 至 T2 的的 T2 至 T3 的力量转化为 电能 从 T3 的绕组 B 相绕组从 C 时 T2 的重新掌权 然后再相电流流过的力矩合成 对钽的大小相同 但合成方向待定的扭矩转向 60 度角 然后 每次改变一个功率管的 阶段 合成转矩矢量方向转 60 度的电角度 但电讯局长的大小保持不变 因此 无刷直流电机 每个绕组的三相半控具有相同的电流 全控型三相星形接 线电路的电路相同 两起案件之间的减刑 扭矩增加了大时代的合成 每 60 度角的第 一动力 每个功率管供电 120 度 240 每个绕组通电时 它是相对功率和 120 度逆功率 度 三相全控的转矩脉动电路相比 小得多的三相半控 只能从 0 87Tm 到 TM 2 三三的力量 就是每一刻权力有三个在同一时间管首次打开时 每个功率管供 电 180 度每 60 度 令他们上 T1T2T3 T2T3T4 T3T4T5 T4T5T6 T6T1T2 TIT2T3 当 T6T1T2 打开从管 T1 的相绕组 电流流 A 时 B 相和 C 相绕组 其中 B 和 C 两相平行绕 组 是从 T6 和 T2 的了 然后流经蜿蜒相绕组 B 相和 C 相电流流动的其合成转矩 1 5 一半大小 经过 60 度电角度 换到 T1T2T3 权力 即先关闭 T6 的 T3 的 请注意 我 们必须先关闭 然后通过 T6 的 T3 的 或 T6 和 T3 的同时将会有力量 电源是 T3 和 T6 的短路 这是绝对不允许的 当电流从 T1 和 T3 流量 A 相和 B 相绕组 然后到 C 相 相当于一个阶段 同时乙 绕组 T2 的外流 其方向和 C 语言相同 转向 60 度 规 模还是 1 5Ta 经过 60 度角 然后 通电后 权力的 T1T2T3 然后等在这种电源模式 每一个时刻有三种电源管理权 一次每 60 度的变化 有一个功率管的每个方向 每个 功率管的 180 度电 4 4无刷直流电机的基本方程无刷直流电机的基本方程 三相无刷直流双极电机用一个例子来说明建立了数学模型的过程 从整个绕组 转子凸极转子结构 三个霍尔元件在太空中相距 120 度 放在浓度对称 Y 型连接的定 子绕组 在此基础上的结构 其他作出以下假设 以简化分析过程 1 忽略不计的电机铁芯涡流损耗和磁滞损耗饱和 2 不包括电枢反应 呼吸那就是平场约 120 度的梯形波电角度分布宽度 3 忽略了齿槽效应在电枢导体表面 电枢连续均匀分布 4 驱动系统逆变功率器件和续流二极管是理想的功能开关 可得三相绕组电压平衡方程为 4 1 0 0 M 0 0M M 0 0 M M aaaa bbbb cccc uiierLM uriLp ie rLuiie 式中 ua ub uc为定子绕组相电压 V ia ib ic为定子绕组相电流 A ea eb ec为定子绕组相电动势 V P 微分算子 P d dt L 为每相绕组的自感 H M 为每两相绕组的互感 H 由于转子磁阻不随转子的位置变化而变化 因此 定子绕组的自感和互感为常数 当三相绕组为 Y 连接 并且没有中线时 则有 ia ib ic 0 Mib Mic Mia 将式式代入式可得电压方程为 4 2 0 0 0 0 0 00 0 0 0 0 0 aaaa bbbb cccc uiieRaLM uRbiLMp ie RcLMuiie 电磁转矩为 Td eaia ebib ecic 4 3 式中 为电机的角速度 rad s 在通电期间 直流无刷电动机的带电导体处于相同的磁场下 各相绕组的感应电 动势为 4 4 30 m mm p N En 式中 pm为极对数 N 为总导体数 m为主磁通 n 为电动机转速 从变频器的直流端看 Y 型联结的无刷直流电机的感应电动势 E 由两相绕组经逆 变器串联组成 所以有 4 5 2 15 m dmm p N EEn 因此 电磁转矩表达式可化为 4 6 24 mdm dmd E Ip N TI n 式中 Id为方波电流的幅值 为电机的角速度 2 60 n 由式 4 5 可以看出 直流无刷方波电机的电磁转矩表达式与普通直流电机相同 其电磁转矩大小与磁通和电流的幅值成正比 所以控制逆变器输出方波电流的幅值即 可控制直流无刷方波电机的转矩 另外电动机转子的运动方程为 4 7 di d TJBT dt 进一步化简可得 4 8 1 dl dB TT dtJJ 式中 为负载转矩 l T 为转子与负载的转动惯量J 为粘滞阻尼系数B 由于本系统采用 120 型三相逆变器 任一时刻只有两相通电 直流无刷方波电机 的输出相电压幅值为 因此 对于每相绕组有如下动态方程式 1 2 s UU 4 9 1 2 d sdaa di UUi RLE dt 式中 为电源电压 s U 忽略粘性摩擦 电动机的转矩平衡方程式为 4 10 2 375 a dl em RGD MM C C 由式 4 9 可得 4 11 m dL a T dE ii Rdt 对式 4 8 和式 4 10 两边分别进行拉式变换后得 4 12 11 1 1 2 d La s Is T sR UsE s 4 13 a dLm RE s IsIsT s 联合式 4 12 和式 4 13 并考虑到 得到直流无刷方波电机的动态结构 e EC n 图 如图 4 7 所示 图 4 7 直流无刷方波电机的动态结构图 4 5逆变电路的选择逆变电路的选择 PWM 速度主要采用脉宽调制器电路控制系统 简称为 PWM 的转换器 PWM 脉冲宽 度调制转换器是用来作为直流斩波器 PWM 变换器的不可逆和可逆的两大类 逆变器有 双极 单极型和有限单极式等多种电路 本设计采用有限单极控制方法 如下图所示 当两帮一两个属于不同的逆变器上 的开关设备 该设备始终在上方的导通状态是开启桥臂功率范围功率 而该装置的底 部是由 PWM 控制定期的状态 这种控制方法可以减少开关损耗时 电机电流小 但不 会有不连续电流的现象 图 4 8 逆变电路 控制器设计 由于本设计的重点是无刷直流电动机驱动方式和仿真 使控制器的 设计将在下一章介绍了用 Matlab 仿真 4 6基于基于 MC33035MC33035 的无刷直流电动机调速系统的无刷直流电动机调速系统 4 6 14 6 1 MC33035MC33035 无刷直流电动机控制芯片无刷直流电动机控制芯片 以前没有能够无刷直流电动机霍尔传感器检测信号的解码位置 具有过流 过热 电压 辅助功能的芯片 因此使用分立元件最初大型模拟电路设计的电机控制专用控 制双向选择 使系统设计 调试非常复杂 占用了大面积的电路板 嵌入式控制器与 电机是不可能的 后来 随着半导体技术的不断进步 它开发出了各种无刷电机控制 芯片 如 MC33035 TB6537P 等 MC33035 下面描述的基本工作原理和应用 MC33035 是一种高性能的第二代单片无刷直流电动机控制器 它包含三个或四个阶 段的开环的所有必要和有效的功能控制 该设备是一个转子的整流序列解码器可提供 良好的传感器电源和温度补偿 频率可编程的锯齿波振荡器 三个集电极开路的顶级 车手的参考电压 以及三个非常为驱动大电流推挽驱动 MOSFET 功率级适合 MC33035 的功能包括开环速度控制 前进或后退 允许运行和阻尼刹车 MC33035 的设计与操作 60 300 或 120 240 电传感器的三相无刷电机 并能有效地控制 刷直流电动机 MC33035 管脚定义如下图所示 图 4 9 MC33035 管脚定义 MC33035 的内部监控三大传感器的输入 使该系统能够提供高端和低端驱动器正确 地输入了正确的时机转子位置解码器 传感器直接输入开放集电极霍尔效应开关或光 纤耦合器相连 此外 该电路还包括上拉电阻 输入阈值通常为 TTL 电平兼容为 2 2V 与 MC33035 系列三相马达控制可以在下一阶段工作的四个传感器最常见的 MC33035 提供 60 120 选择 MC33035 可以很容易地与一个 60 度 120 度 240 度或 300 度的传感器相位电机控制 这三个传感器输入八个输入码 这是有效的转子位置六 其他两个组合是无效的编码可能的组合 通过六个有效输入解码器的代码可以使用在 窗口电气阶段的 60 度来区分的转子位置 MC33035 无刷直流电动机控制器正向 反向转动的定子绕组的电压来改变方向输出 当输入状态变化 传感器输入编码从指定的前高后低 从而改变整流时序改变电机的 旋转方向 电机开 关通过输出控制使能实现 当该引脚是开放的 连接到正电源的内置上拉 电阻将开始在该驱动器的输出时序顶部和底部 当该引脚接地 顶部驱动输出将关闭 和底部的驱动力低 使电机停止 4 6 24 6 2 基于基于 MC33035MC33035 的无刷直流电动机调速系统设计的无刷直流电动机调速系统设计 MC33035 构成的无刷直流电机开环控制系统 如图 3 7 所示 在为 MOSFET 电源 开关设备 在任何给定转子位置一个数字 而只有一只胳膊和腿下桥开关打开 两个 转属于不同的图腾柱管 此开关结构允许的定子绕组和地面之间的电压 使电流可以 夹在两个方向流动的两端 可能会出现在电流波形的峰值 这个峰值电流限制保护将 导致故障 所以在外部 RC 滤波器的电流检测引脚必须防止这种情况发生 图 4 10 开环控制电路 图 4 11 闭环控制电路 MC33035 本身只能用于开环控制电机转速闭环速度控制 MC33035 要求输入电压成 正比 电机的转速 一般来说 这可以由电机转速测速反馈电压来实现的 图 3 8 使 用 MC33039 MC33039 MC33035 到 6 25V 的参考电平 引脚 8 电源 MC33039 可以生 成而不需要昂贵的测速反馈电压的需要 MC33035 转子位置作为一个霍尔传感器输出信 号的解码 也可以由 MC33039 使用 在网上任何一个传感器 对于每一个积极和消极 的过渡霍尔传感器 该 MC33039 可以产生一定程度和持续时间的脉搏 R1 和电容 C1 确 定外部电阻器的参数 在 MC33039 MC33035 输出引脚爆波 5 积分误差放大器产生一个 分支的水平 水平与电机的速度和成正比 这个速度是成正比的 MC33035 电机控制 PWM 引脚 13 的水平 建立参考电压 并反馈闭环 MC33035 输出功率 MOSFET 驱动器相桥式 逆变器 当电机启动制动和转向的变化可能产生大电流 5 5无刷直流电机调速系统的无刷直流电机调速系统的 MATLABMATLAB 仿真仿真 MATLAB 是作为一种编程语言的编程提供了矩阵运算和操作 和功能强大的各种图 形的基本单位矩阵 是目前最流行的电脑辅助控制系统设计软件 数学工程 1992 年 公司推出的交互式模型输入 SIMULINK 的仿真环境 它可能采取一系统框图或差分方程 模拟 SIMULINK 的电力系统将链接库 电力系统模块库 它可以使其实现电力电子 系统的模拟 在这一章中 无刷直流电动机控制系统将是分析控制器 无刷直流电机 换相过程和逻辑控制为重点 采用 Matlab Simulink 仿真的实验终于 图 5 1Simulink 的直流无刷电机的仿真框图 这种设计是一种单闭环可逆直流无 刷电机驱动器的速度 该模型无刷直流电动机 逆变桥 转子位置译码器 语音识别 控制电平转换器和 PWM 波形发生器等主要部分 其基本工作原理为一个给定的速度 速度给定 和速度 转子转速 输入到后来的减法的 ASR 调速器 来计算控制信号 输入到控制电平转换后产生一个 PWM 发生器给定的信号 最后输入 PWM 波与霍尔信号 和逻辑运算的速度解码器产生错误信号逆变桥开关器件的控制信号 实现了可逆的无 刷直流电动机速度控制 为转子的位置解码器 ASR 和 PWM 波形发生器 管理水平的转换器最关键的部分之 一 下面的说明将集中在这些设计的一些原则 图 5 1 无刷直流电机仿真 5 1电源 逆变桥和无刷直流电机模型电源 逆变桥和无刷直流电机模型 功率从在 Simulink SimPower 系统的直流电源模块直接 电压为 450V 逆变器采用 Uinversal Bridage 通用逆变桥 这可用于整改模块也可用于变频 器 特别是与电流方向有关 显然 设计为逆变器 具体设置为桥臂 采用功率 MOSFET 电力电子设备使用 G 端子功能模块 6 电源设备接收数字通信指导 内部结构 如下图所示 图 5 2 Universal Bridge 模块结构 无刷直流电动机模型 在 MATLAB 中 无刷直流电机模型 可与 Simulink 电感 电容及数学模型的仿真模型提供的其他电路元件也可用于模拟 S 函数编程 本设计采用直接 Simulink 的 SimPowerSystems 的 机在永磁同步电机 永磁同步 电动机 模块 提供给设置反电动势波形为梯形波无刷直流电动机模型 电机参数设 置如图 5 3 其具体含义为 Stator phase resistance Rs 定子相电阻 2 8750 Stator phase inductance Ls 定子相电感 0 0085H Flux linkage established by magnets 磁链常数 Voltage constant 电压常数 Torque Constant 转矩常数 Back EMF flat area 反电动势平顶宽度 120 度电角度 Inertia fiction factor and pole pairs 转动惯量 0 8e 3kg m 2 摩擦系数 1 98e 3N m s 极对数 4 在此参数条件下 可知当直流电压为 450V 电机采用三相两两通电驱动方式 空载转速为 3000rpm 左右 图 5 3 电机参数设置 5 2换相逻辑控制模块换相逻辑控制模块 这个模块是三个霍尔传感器信号和 PWM 信号和组合解码错误信号生成速度逆变桥 开关器件的控制信号 从而实现对逆变桥控制和无刷直流电机单极的 SR 限制型 此模块结构如下图 图 5 4 系统 Decoder 模块 此模块有 3 个输入端一个输出端 它们分别为 Input1 三个霍尔信号 Input2 PWM 信号 Input3 转速偏差信号 Outpu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论