




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列排列 复习基本原理复习基本原理 1 加法原理 做一件事 完成它可以有 n 类办法 第一类办法 中有 m1种不同的方法 第二办法中有 m2种不同的方法 第 n 办法中有 mn种不同的方法 那么完成这件事共有 N m1 m2 m3 mn 种不同的方法 2 乘法原理 做一件事 完成它需要分成 n 个步骤 做第一 步有 m1种不同的方法 做第二步有 m2种不同的方法 做第 n 步有 mn种不同的方法 那么完成这件事共有 N m1 m2 m3 mn 种不同的方法 3 两个原理的区别 练习 1 1 北京 上海 广州三个民航站之间的直达航线 需要准备多 少种不同的机票 2 由数字 1 2 3 可以组成多少个无重复数字的二位数 请一 一列出 基本概念 1 什么叫排列 从 n 个不同元素中 任取 m 个元素nm 这里的被取元素各不相同 按照一定的顺序一定的顺序排成一列 叫做从 n 个不同元素中取出 m 个元素的一个排列一个排列 2 什么叫不同的排列 元素和顺序至少有一个不同 3 什么叫相同的排列 元素和顺序都相同的排列 4 什么叫一个排列 例题与练习 1 由数字 1 2 3 4 可以组成多少个无重复数字的三位数 2 已知 a b c d 四个元素 写出每次取出 3 个元素的所有 排列 写出每次取出 4 个元素的所有排列 排列数 1 定义 从 n 个不同元素中 任取 m 个元素的所有排nm 列的个数叫做从 n 个元素中取出 m 元素的排列数 用符号表示 m n p 用符号表示上述各题中的排列数 2 排列数公式 n n 1 n 2 n m 1 m n p 1 n p 2 n p 3 n p 4 n p 计算 2 5 p 4 5 p 2 15 p 课后检测 1 写出 从五个元素 a b c d e 中任意取出两个 三个元素的 所有排列 由 1 2 3 4 组成的无重复数字的所有 3 位数 由 0 1 2 3 组成的无重复数字的所有 3 位数 2 计算 3 100 p 3 6 p 2 8 4 8 p2p 7 12 8 12 p p 排排 列列 课题 课题 排列的简单应用 1 目的 目的 进一步掌握排列 排列数的概念以及排列数的两个计算 公式 会用排列数公式计算和解决简单的实际问题 过程 过程 一 一 复习 引导学生对上节课所学知识进行复习整理 1 排列的定义 理解排列定义需要注意的几点问题 2 排列数的定义 排列数的计算公式 或 其中 m n 1 2 1 mnnnnAm n mn n Am n m n Z 3 全排列 阶乘的意义 规定 0 1 4 分类 分步 思想在排列问题中的应用 二 二 新授 例例 1 7 位同学站成一排 共有多少种不同的排法 解 问题可以看作 7 个元素的全排列 5040 7 7 A 7 位同学站成两排 前 3 后 4 共有多少种不同的排法 解 根据分步计数原理 7 6 5 4 3 2 1 7 5040 7 位同学站成一排 其中甲站在中间的位置 共有多少种不 同的排法 解 问题可以看作 余下的 6 个元素的全排列 720 6 6 A 7 位同学站成一排 甲 乙只能站在两端的排法共有多少种 解 根据分步计数原理 第一步 甲 乙站在两端有种 第 2 2 A 二步 余下的 5 名同学进行全排列有种 则共有 240 种排列 5 5 A 2 2 A 5 5 A 方法 7 位同学站成一排 甲 乙不能站在排头和排尾的排法共有 多少种 解法一 直接法 第一步 从 除去甲 乙 其余的 5 位 同学中选 2 位同学站在排头和排尾有种方法 第二步 从余下的 5 2 5 A 位同学中选 5 位进行排列 全排列 有种方法 所以一共有 5 5 A 2400 种排列方法 2 5 A 5 5 A 解法二 排除法 若甲站在排头有种方法 若乙站在排 6 6 A 尾有种方法 若甲站在排头且乙站在排尾则有种方法 所以甲 6 6 A 5 5 A 不能站在排头 乙不能排在排尾的排法共有 2400 7 7 A 6 6 2A 5 5 A 种 小结一 小结一 对于 在 与 不在 的问题 常常使用 直接法 或 排除法 对某些特殊元素可以优先考虑 例例 2 7 位同学站成一排 甲 乙两同学必须相邻的排法共有多少种 解 先将甲 乙两位同学 捆绑 在一起看成一个元素与其余 的 5 个元素 同学 一起进行全排列有种方法 再将甲 乙两个 6 6 A 同学 松绑 进行排列有种方法 所以这样的排法一共有 2 2 A 1440 6 6 A 2 2 A 甲 乙和丙三个同学都相邻的排法共有多少种 解 方法同上 一共有 720 种 5 5 A 3 3 A 甲 乙两同学必须相邻 而且丙不能站在排头和排尾的排法 有多少种 解法一 将甲 乙两同学 捆绑 在一起看成一个元素 此 时一共有 6 个元素 因为丙不能站在排头和排尾 所以可以从其余 的 5 个元素中选取 2 个元素放在排头和排尾 有种方法 将剩下 2 5 A 的 4 个元素进行全排列有种方法 最后将甲 乙两个同学 松绑 4 4 A 进行排列有种方法 所以这样的排法一共有 960 种方 2 2 A 2 5 A 4 4 A 2 2 A 法 解法二 将甲 乙两同学 捆绑 在一起看成一个元素 此时 一共有 6 个元素 若丙站在排头或排尾有 2种方法 所以丙不能 5 5 A 站在排头和排尾的排法有种方法 960 2 2 2 5 5 6 6 AAA 解法三 将甲 乙两同学 捆绑 在一起看成一个元素 此时 一共有 6 个元素 因为丙不能站在排头和排尾 所以可以从其余的 四个位置选择共有种方法 再将其余的 5 个元素进行全排列共有 1 4 A 种方法 最后将甲 乙两同学 松绑 所以这样的排法一共有 5 5 A 960 种方法 1 4 A 5 5 A 2 2 A 小结二 小结二 对于相邻问题 常用 捆绑法 先捆后松 例例 3 7 位同学站成一排 甲 乙两同学不能相邻的排法共有多少种 解法一 排除法 3600 2 2 6 6 7 7 AAA 解法二 插空法 先将其余五个同学排好有种方法 此时 5 5 A 他们留下六个位置 就称为 空 吧 再将甲 乙同学分别插入这 六个位置 空 有种方法 所以一共有种方法 2 6 A3600 2 6 5 5 AA 甲 乙和丙三个同学都不能相邻的排法共有多少种 解 先将其余四个同学排好有种方法 此时他们留下五个 空 4 4 A 再将甲 乙和丙三个同学分别插入这五个 空 有种方法 所以 3 5 A 一共有 1440 种 4 4 A 3 5 A 小结三 小结三 对于不相邻问题 常用 插空法 特殊元素后考虑 三 小结 1 对有约束条件的排列问题 应注意如下类型 某些元素不能在或必须排列在某一位置 某些元素要求连排 即必须相邻 某些元素要求分离 即不能相邻 2 基本的解题方法 有特殊元素或特殊位置的排列问题 通常是先排特殊元素或 特殊位置 称为优先处理特殊元素 位置 法 优限法 某些元素要求必须相邻时 可以先将这些元素看作一个元素 与其他元素排列后 再考虑相邻元素的内部排列 这种方法称为 捆绑法 某些元素不相邻排列时 可以先排其他元素 再将这些不相 邻元素插入空挡 这种方法称为 插空法 在处理排列问题时 一般可采用直接和间接两种思维形式 从而寻求有效的解题途径 这是学好排列问题的根基 四 作业 课课练 之 排列 课时 1 3 课题 课题 排列的简单应用 2 目的 目的 使学生切实学会用排列数公式计算和解决简单的实际问 题 进一步培养分析问题 解决问题的能力 同时让学生学会一题 多解 过程 过程 一 一 复习 1 排列 排列数的定义 排列数的两个计算公式 2 常见的排队的三种题型 某些元素不能在或必须排列在某一位置 优限法 某些元素要求连排 即必须相邻 捆绑法 某些元素要求分离 即不能相邻 插空法 3 分类 分布思想的应用 二 二 新授 示例一 示例一 从 10 个不同的文艺节目中选 6 个编成一个节目单 如果某女演员的独唱节目一定不能排在第二个节目的位置上 则共 有多少种不同的排法 解法一 从特殊位置考虑 136080 5 9 1 9 AA 解法二 从特殊元素考虑 若选 若不选 5 9 5 A 6 9 A 则共有 136080 5 9 5 A 6 9 A 解法三 间接法 136080 5 9 6 10 AA 示例二 示例二 八个人排成前后两排 每排四人 其中甲 乙要排在前排 丙要排在后排 则共有多少种不同的排法 略解 甲 乙排在前排 丙排在后排 其余进行全排列 2 4 A 1 4 A 5 5 A 所以一共有 5760 种方法 2 4 A 1 4 A 5 5 A 不同的五种商品在货架上排成一排 其中 a b 两种商品必须 排在一起 而 c d 两种商品不排在一起 则不同的排法共有多少种 略解 捆绑法 和 插空法 的综合应用 a b 捆在一起与 e 进行排列有 2 2 A 此时留下三个空 将 c d 两种商品排进去一共有 最后将 a 2 3 A b 松绑 有 所以一共有 24 种方法 2 2 A 2 2 A 2 3 A 2 2 A 6 张同排连号的电影票 分给 3 名教师与 3 名学生 若要求 师生相间而坐 则不同的坐法有多少种 略解 分类 若第一个为老师则有 若第一个为学生则 3 3 A 3 3 A 有 3 3 A 3 3 A 所以一共有 2 72 种方法 3 3 A 3 3 A 示例三 示例三 由数字 1 2 3 4 5 可以组成多少个没有重复数字的正整 数 略解 325 5 5 4 5 3 5 2 5 1 5 AAAAA 由数字 1 2 3 4 5 可以组成多少个没有重复数字 并且 比 13 000 大的正整数 解法一 分成两类 一类是首位为 1 时 十位必须大于等于 3 有种方法 另一类是首位不为 1 有种方法 所以一共有 3 3 1 3A A 4 4 1 4A A 个数比 13 000 大 3 3 1 3A A114 4 4 1 4 AA 解法二 排除法 比 13 000 小的正整数有个 所以比 13 3 3 A 000 大的正整数有 114 个 5 5 A 3 3 A 示例四 示例四 用 1 3 6 7 8 9 组成无重复数字的四位数 由 小到大排列 第 114 个数是多少 3 796 是第几个数 解 因为千位数是 1 的四位数一共有个 所以第 11460 3 5 A 个数的千位数应该是 3 十位数字是 1 即 31 开头的四位数 有个 同理 以 36 37 38 开头的数也分别有 12 个 12 2 4 A 所以第 114 个数的前两位数必然是 39 而 3 968 排在第 6 个位 置上 所以 3 968 是第 114 个数 由上可知 37 开头的数的前面有 60 12 12 84 个 而 3 796 在 37 开头的四位数中排在第 11 个 倒数第二个 故 3 796 是第 95 个数 示例五 示例五 用 0 1 2 3 4 5 组成无重复数字的四位数 其 中 能被 25 整除的数有多少个 十位数字比个位数字大的有多少个 解 能被 25 整除的四位数的末两位只能为 25 50 两种 末尾为 50 的四位数有个 末尾为 25 的有个 所以一共有 2 4 A 1 3 1 3A A 21 个 2 4 A 1 3 1 3A A 注 注 能被 25 整除的四位数的末两位只能为 25 50 75 00 四种情况 用 0 1 2 3 4 5 组成无重复数字的四位数 一共有 个 因为在这 300 个数中 十位数字与个位数字的大小关300 3 5 1 5 AA 系是 等可能的等可能的 所以十位数字比个位数字大的有个 150 2 1 3 5 1 5 AA 三 三 小结 能够根据题意选择适当的排列方法 同时注意考虑 问题的全面性 此外能够借助一题多解检验答案的正确性 四 四 作业 3 X 之 排列 练习 组组 合合 课题 课题 组合 组合数的概念 目的 目的 理解组合的意义 掌握组合数的计算公式 过程 过程 一 一 复习 引入 1 复习排列的有关内容 定 义 特 点 相 同排列 公 式 排 列 以上由学生口答 2 提出问题 示例 1 从甲 乙 丙 3 名同学中选出 2 名去参加某天的一项 活动 其中 1 名同学参加上午的活动 1 名同学参加下午的活动 有多少种不同的选法 示例 2 从甲 乙 丙 3 名同学中选出 2 名去参加一项活动 有多少种不同的选法 引导观察 示例 1 中不但要求选出 2 名同学 而且还要按照一 定的顺序 排列 而示例 2 只要求选出 2 名同学 是与顺序无关 的 引出课题 组合问题 二 二 新授 1 组合的概念 一般地 从 n 个不同元素中取出 m m n 个元素并成一组 叫做从 n 个不同元素中取出 m 个元素的一个组组 合合 注 注 1 不同元素 2 只取不排 无序性无序性 3 相同组合 元素相同 判断下列问题哪个是排列问题哪个是组合问题 从 A B C D 四个景点选出 2 个进行游览 组合 从甲 乙 丙 丁四个学生中选出 2 个人担任班长和团支部 书记 排列 2 组合数的概念 从 n 个不同元素中取出 m m n 个元素 的所有组合的个数 叫做从 n 个不同元素中取出 m 个元素的组合组合 数数 用符号表示 m n C 例如 示例 2 中从 3 个同学选出 2 名同学的组合可以为 甲 乙 甲丙 乙丙 即有种组合 3 2 3 C 又如 从 A B C D 四个景点选出 2 个进行游览的组合 AB AC AD BC BD CD 一共 6 种组合 即 6 2 4 C 在讲解时一定要让学生去分析 要解决的问题是排列问题还 是组合问题 关键是看是否与顺序有关关键是看是否与顺序有关 那么又如何计算呢 m n C 3 组合数公式的推导 提问 从 4 个不同元素 a b c d 中取出 3 个元素的组合数 是多少呢 3 4 C 启发 由于排列是先组合再排列排列是先组合再排列 而从 4 个不同元素中取出 3 个元素的排列数 可以求得 故我们可以考察一下和的关系 3 4 A 3 4 C 3 4 A 如下 组 合 排列 dcbcdbbdcdbccbdbcdbcd dcacdaadcdaccadacdacd dbabdaadbdabbadabdabd cbabcaacbcabbacabcabc 由此可知 每一个组合都对应着 6 个不同的排列 因此 求从 4 个不同元素中取出 3 个元素的排列数 可以分如下两步 考 3 4 A 虑从 4 个不同元素中取出 3 个元素的组合 共有个 对每一个 3 4 C 组合的 3 个不同元素进行全排列 各有种方法 由分步计数原理 3 3 A 得 所以 3 4 A 3 4 C 3 3 A 3 3 3 43 4 A A C 推广 一般地 求从 n 个不同元素中取出 m 个元素的排列 数 可以分如下两步 先求从 n 个不同元素中取出 m 个元素 m n A 的组合数 求每一个组合中 m 个元素全排列数 根据分布 m n C m m A 计数原理得 m n A m n C m m A 组合数的公式 1 2 1 m mnnnn A A C m m m nm n 或 mnm n C m n nmNmn 且 巩固练习 1 计算 4 7 C 7 10 C 2 求证 1 1 m n m n C mn m C 3 设 求的值 Nx 32 1 1 32 x x x x CC 解 由题意可得 即 2 x 4 321 132 xx xx x 2 或 3 或 4 Nx 当 x 2 时原式值为 7 当 x 3 时原式值为 7 当 x 2 时原式 值为 11 所求值为 4 或 7 或 11 4 例题讲评 例 1 6 本不同的书分给甲 乙 丙 3 同学 每人各得 2 本 有多少种不同的分 法 略解 90 2 2 2 4 2 6 CCC 例 2 4 名男生和 6 名女生组成至少有 1 个男生参加的三人实践 活动小组 问组成方法共有多少种 解法一 直接法 小组构成有三种情形 3 男 2 男 1 女 1 男 2 女 分别有 所以一共有 3 4 C 1 6 2 4 CC 2 6 1 4 CC 3 4 C 1 6 2 4 CC 100 种方法 2 6 1 4 CC 解法二 间接法 100 3 6 3 10 CC 5 学生练习 课本 99 练习 三 三 小结 定 义 特 点 相 同组合组合 公 式 排 列 组组 合合 此外 解决实际问题时首先要看是否与顺序有关 从而确定 是排列问题还是组合问题 必要时要利用分类和分步计数原理 四 四 作业 课堂作业 教学与测试 75 课 课外作业 课课练 课时 7 和 8 组组 合合 课题 课题 组合的简单应用及组合数的两个性质 目的 目的 深刻理解排列与组合的区别和联系 熟练掌握组合数的 计算公式 掌握组合数的两个性质 并且能够运用它解决一些简单 的应用问题 过程 过程 一 一 复习回顾 1 复习排列和组合的有关内容 强调 排列 次序性 组合 无序性 2 练习一 练习 1 求证 本式也可变形为 1 1 m n m n C m n C 1 1 m n m n nCmC 练习 2 计算 和 与 3 10 C 7 10 C 2 6 3 7 CC 3 6 C 5 11 4 11 CC 答案 120 120 20 20 792 此练习的目的为下面学习组合数的两个性质打好基 础 3 练习二 平面内有 10 个点 以其中每 2 个点为端点的线段共有多少 条 平面内有 10 个点 以其中每 2 个点为端点的有向线段共有 多少条 答案 组合问题 排列问题 45 2 10 C90 2 10 A 二 二 新授 1 组合数的 性质性质 1 mn n m n CC 理解 一般地 从 n 个不同元素中取出 m 个元素后 剩下 n m 个元素 因 为从 n 个不同元素中取出 m 个元素的每一个组合 与剩下的 n m 个元素的每一个组合一一对应一一对应 所以从 n 个不同元素中取出 m 个元素的组合数 等于从这 n 个元素中取出 n m 个元素的组合数 即 在这里 我们主要体现 取法 与 剩法 是 mn n m n CC 一一对应 的思想 证明 mnm n mnnmn n C mn n 又 mnm n C m n mn n m n CC 注 注 1 我们规定 1 0 n C 2 等式特点 等式两边下标同 上标之和等于下标 3 此性质作用 当时 计算可变为计算 能够使 2 n m m n C mn n C 运算简化 例如 2002 2001 2002 C 20012002 2002 C 1 2002 C 4 或 y n x n CC yx nyx 2 示例一 课本 101 例 4 一个口袋内装有大小相同的 7 个 白球和 1 个黑球 从口袋内取出 3 个球 共有多少种取法 从口袋内取出 3 个球 使其中含有 1 个黑球 有多少种取法 从口袋内取出 3 个球 使其中不含黑球 有多少种取法 解 56 3 8 C21 2 7 C35 3 7 C 引导学生发现 为什么呢 3 8 C 2 7 C 3 7 C 我们可以这样解释 从口袋内的 8 个球中所取出的 3 个球 可 以分为两类 一类含有 1 个黑球 一类不含有黑球 因此根据分类 计数原理 上述等式成立 一般地 从这 n 1 个不同元素中取出 m 个元素 121 n aaa 的组合数是 这些组合可以分为两类 一类含有元素 一类不 m n C 1 1 a 含有 含有的组合是从这 n 个元素中取出 m 1 个元 1 a 1 a 132 n aaa 素与组成的 共有个 不含有的组合是从这 n 1 a 1 m n C 1 a 132 n aaa 个元素中取出 m 个元素组成的 共有个 根据分类计数原理 可 m n C 以得到组合数的另一个性质 在这里 我们主要体现从特殊到一般 的归纳思想 含与不含其元素 的分类思想 3 组合数的 性质性质 2 m n C 1 m n C 1 m n C 证明 1 1 1 mnm n mnm n CC m n m n 1 1 mnm mnmnn 1 1 mnm nmmn 1 1 mnm n m n C 1 m n C 1 m n C 1 m n C 注 1 公式特征 下标相同而上标差 1 的两个组合数之和 等于下标比原下标多 1 而上标与高的相同的一个组合数 2 此性质的作用 恒等变形 简化运算 在今后学习 二 项式定理 时 我们会看到它的主要应用 4 示例二 计算 6 9 5 8 4 7 3 7 CCCC 求证 n m C 2 n m C 1 2 n m C 2 n m C 解方程 32 13 1 13 xx CC 解方程 3 3 3 2 2 2 10 1 x x x x x ACC 计算 和 4 4 3 4 2 4 1 4 0 4 CCCCC 5 5 4 5 3 5 2 5 1 5 0 5 CCCCCC 推广 推广 nn n n nnnn CCCCC2 1210 5 组合数性质的简单应用 证明下列等式成立 讲解 1 1321 k n k k k k k n k n k n CCCCCC 练习 1 121 k kn k nk k k k k k k CCCCC 2 32 10321n nnn n nnnn CCC n nCCCC 6 处理 教学与测试 76 课例题 三 三 小结 1 组合数的两个性质 2 从特殊到一般的归纳思想 四 四 作业 课堂作业 教学与测试 76 课 课外作业 课本习题 10 3 课课练课时 9 组组 合合 课题 课题 组合 组合数的综合应用 目的 目的 进一步巩固组合 组合数的概念及其性质 能够解决一 些较为复杂的组合应用问题 提高合理选用知识的能力 过程 过程 一 一 知识复习 1 复习排列和组合的有关内容 依然强调 排列 次序性 组合 无序性 2 排列数 组合数的公式及有关性质 性质 1 性质 2 mn n m n CC m n C 1 m n C 1 m n C 常用的等式 1 1 1 0 1 0 k k k kkk CCCC 3 练习 处理 教学与测试 76 课例题 二 二 例题评讲 例 1 100 件产品中有合格品 90 件 次品 10 件 现从中抽取 4 件检查 都不是次品的取法有多少种 至少有 1 件次品的取法有多少种 不都是次品的取法有多少种 解 2555190 4 90 C 1366035 4 10 1 90 3 10 2 90 2 10 3 90 1 10 4 90 4 100 CCCCCCCCC 3921015 4 90 1 10 3 90 2 10 2 90 3 10 1 90 4 10 4 100 CCCCCCCCC 例 2 从编号为 1 2 3 10 11 的共 11 个球中 取出 5 个球 使得这 5 个球的编号之和为奇数 则一共有多少种不同的取 法 解 分为三类 1 奇 4 偶有 3 奇 2 偶有 5 奇 1 4 5 1 6C C 2 5 3 6C C 偶有 5 6 C 所以一共有 4 5 1 6C C 2 5 3 6C C236 5 6 C 例 3 现有 8 名青年 其中有 5 名能胜任英语翻译工作 有 4 名青年能胜任德语翻 译工作 其中有 1 名青年两项工作都能胜任 现在要从中挑选 5 名青年承担一项任务 其中 3 名从事英语翻译工作 2 名从事德语 翻译工作 则有多少种不同的选法 解 我们可以分为三类 让两项工作都能担任的青年从事英语翻译工作 有 2 3 2 4C C 让两项工作都能担任的青年从事德语翻译工作 有 1 3 3 4C C 让两项工作都能担任的青年不从事任何工作 有 2 3 3 4C C 所以一共有 42 种方法 2 3 2 4C C 1 3 3 4C C 2 3 3 4C C 例 4 甲 乙 丙三人值周 从周一至周六 每人值两天 但 甲不值周一 乙不值周六 问可以排出多少种不同的值周表 解法一 排除法 422 1 3 1 4 2 4 1 5 2 4 2 6 CCCCCC 解法二 分为两类 一类为甲不值周一 也不值周六 有 另一类为甲不值周一 但值周六 有 所以一共有 2 4 1 4C C 2 3 2 4C C 42 种方法 2 4 1 4C C 2 3 2 4C C 例 5 6 本不同的书全部送给 5 人 每人至少 1 本 有多少种不 同的送书方法 解 第一步从 6 本不同的书中任取 2 本 捆绑 在一起看成 一个元素有种方法 第二步将 5 个 不同元素 书 分给 5 个 2 6 C 人有种方法 根据分步计数原理 一共有 1800 种方法 5 5 A 2 6 C 5 5 A 变题 1 6 本不同的书全部送给 5 人 有多少种不同的送书方法 变题 2 5 本不同的书全部送给 6 人 每人至多 1 本 有多少种不 同的送书方法 变题 3 5 本相同的书全部送给 6 人 每人至多 1 本 有多少种不 同的送书方法 答案 1 2 3 1562556 720 5 6 A6 5 6 C 三 三 小结 1 组合的定义 组合数的公式及其两个性质 2 组合的应用 分清是否要排序 四 四 作业 3 X 组合基础训练 课课练 课时 10 组合四 组组 合合 课题 课题 组合 组合数的综合应用 目的 目的 对排列组合知识有一个系统的了解 掌握排列组合一些 常见的题型及解题方法 能够运用两个原理及排列组合概念解决排 列组合问题 过程 过程 一 一 知识复习 1 两个基本原理 2 排列和组合的有关概念及相关性质 二 二 例题评讲 例 1 6 本不同的书 按下列要求各有多少种不同的选法 分给甲 乙 丙三人 每人两本 分为三份 每份两本 分为三份 一份一本 一份两本 一份三本 分给甲 乙 丙三人 一人一本 一人两本 一人三本 分给甲 乙 丙三人 每人至少一本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年阜阳太和县第二人民医院招聘45人模拟试卷附答案详解(突破训练)
- 2025安徽芜湖市第三城市医疗集团成员单位招聘编外人员15人考前自测高频考点模拟试题及一套完整答案详解
- 后勤的工作总结15篇
- 2025年原研药项目建议书
- 2025年上海市建筑工程学校公开招聘考前自测高频考点模拟试题及答案详解(新)
- 2025甘肃市卫生健康委招聘公益性岗位人员10人模拟试卷完整参考答案详解
- 2025广西北流市山围镇卫生院招聘编外人员模拟试卷及答案详解(名校卷)
- 2025福建福州市仓山区卫健系统招聘编内31人考前自测高频考点模拟试题及答案详解1套
- 2025河南工程学院招聘高层次人才160人考前自测高频考点模拟试题带答案详解
- 2025昆明聂耳交响乐团编外人员招聘(1人)考前自测高频考点模拟试题及答案详解一套
- 公共资源交易知识培训
- 重难点解析人教版8年级数学上册《全等三角形》综合测试试卷(详解版)
- 【国际音标】初高中英语音标拼读规则表(附口型图)
- 装修水电验收合同范本
- 印制电路制作工专项考核试卷及答案
- 年产50万吨生化黄腐酸BFA系列产品项目可行性研究报告
- 牛字旁硬笔书法课件
- 企业用人管理培训课件
- 2026届湖南省常德市桃源一中历史高三上期末联考模拟试题
- 关于冷热湿敷的护理
- 2025年部编版新教材八年级语文上册第三单元复习课教案
评论
0/150
提交评论