椭圆及其标准方程 (2)_第1页
椭圆及其标准方程 (2)_第2页
椭圆及其标准方程 (2)_第3页
椭圆及其标准方程 (2)_第4页
椭圆及其标准方程 (2)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第 1 页 共 8 页 椭圆及其标准方程椭圆及其标准方程 一 教学目标一 教学目标 一 知识教学点 使学生理解椭圆的定义 掌握椭圆的标准方程的推导及标准方程 二 能力训练点 通过对椭圆概念的引入与标准方程的推导 培养学生分析探索能力 增强运用坐标法 解决几何问题的能力 三 学科渗透点 通过对椭圆标准方程的推导的教学 可以提高对各种知识的综合运用能力 二 教材分析二 教材分析 1 重点 椭圆的定义和椭圆的标准方程 解决办法 用模型演示椭圆 再给出椭圆的定义 最后加以强调 对椭圆 的标准方程单独列出加以比较 2 难点 椭圆的标准方程的推导 解决办法 推导分 4 步完成 每步重点讲解 关键步骤加以补充说明 3 疑点 椭圆的定义中常数加以限制的原因 解决办法 分三种情况说明动点的轨迹 三 活动设计三 活动设计 提问 演示 讲授 详细讲授 演板 分析讲解 学生口答 四 教学过程四 教学过程 一 椭圆概念的引入 前面 大家学习了曲线的方程等概念 哪一位同学回答 问题1 什么叫做曲线的方程 求曲线方程的一般步骤是什么 其中哪几个 步骤必不可少 第 2 页 共 8 页 对上述问题学生的回答基本正确 否则 教师给予纠正 这样便于学生温故而知新 在已有知识基础上去探求新知识 提出这一问题以便说明标准方程推导中一个同解变形 问题3 圆的几何特征是什么 你能否可类似地提出一些轨迹命题作广泛的 探索 一般学生能回答 平面内到一定点的距离为常数的点的轨迹是圆 对同学提出的 轨迹命题如 到两定点距离之和等于常数的点的轨迹 到两定点距离平方差等于常数的点的轨迹 到两定点距离之差等于常数的点的轨迹 教师要加以肯定 以鼓励同学们的探索精神 比如说 若同学们提出了 到两定点距离之和等于常数的点的轨迹 那么动点轨迹 是什么呢 这时教师示范引导学生绘图 取一条一定长的细绳 把它的两端固定在画图板上的F1和 F2两点 如图 2 13 当绳长大于 F1和 F2的距离时 用铅笔尖把绳子拉紧 使笔尖在图板上慢慢移 动 就可以画出一个椭圆 教师进一步追问 椭圆 在哪些地方见过 有的同学说 立体几何中圆的直观 图 有的同学说 人造卫星运行轨道 等 在此基础上 引导学生概括椭圆的定义 平面内到两定点F1 F2的距离之和等于常数 大于 F1F2 的点的轨迹叫做椭 圆 这两个定点叫做椭圆的焦点 两焦点的距离叫做焦距 第 3 页 共 8 页 学生开始只强调主要几何特征 到两定点F1 F2的距离之和等于常数 教师 在演示中要从两个方面加以强调 1 将穿有铅笔的细线拉到图板平面外 得到的不是椭圆 而是椭球形 使 学生认识到需加限制条件 在平面内 2 这里的常数有什么限制吗 教师边演示边提示学生注意 若常数 F1F2 则是线段 F1F2 若常数 F1F2 则轨迹不存在 若要轨迹是椭圆 还必须加上限制条件 此常数大于 F1F2 二 椭圆标准方程的推导 1 标准方程的推导 标准方程的推导 由椭圆的定义 可以知道它的基本几何特征 但对椭圆还具有哪些性质 我们还一无 所知 所以需要用坐标法先建立椭圆的方程 如何建立椭圆的方程 根据求曲线方程的一般步骤 可分 1 建系设点 2 点 的集合 3 代数方程 4 化简方程等步骤 1 建系设点建系设点 建立坐标系应遵循简单和优化的原则 如使关键点的坐标 关键几何量 距离 直 线斜率等 的表达式简单化 注意充分利用图形的对称性 使学生认识到下列选 取方法是恰当的 以两定点F1 F2的直线为 x 轴 线段 F1F2的垂直平分线为 y 轴 建立直角 坐标系 如图 2 14 设 F1F2 2c c 0 M x y 为椭圆上任意一点 则有 F1 1 0 F2 c 0 2 点的集合点的集合 由定义不难得出椭圆集合为 第 4 页 共 8 页 P M MF1 MF2 2a 3 代数方程代数方程 4 化简方程化简方程 化简方程可请一个反映比较快 书写比较规范的同学板演 其余同学在下面完成 教 师巡视 适当给予提示 原方程要移项平方 否则化简相当复杂 注意两次平方的理由详见问题3 说 明 整理后 再平方得 a2 c2 x2 a2y2 a2 a2 c2 为使方程对称和谐而引入b 同时 b 还有几何意义 下节课还要 a b 0 关于证明所得的方程是椭圆方程 因教材中对此要求不高 可从略 示的椭圆的焦点在x 轴上 焦点是 F1 c 0 F2 c 0 这里 c2 a2 b2 2 两种标准方程的比较 两种标准方程的比较 引导学生归纳引导学生归纳 0 F2 c 0 这里 c2 a2 b2 第 5 页 共 8 页 c F2 0 c 这里 c2 a2 b2 只须将 1 方程的 x y 互换即可得到 教师指出 在两种标准方程中 a2 b2 可以根据分母的大小来判定焦点 在哪一个坐标轴上 三 例题与练习 例题例题 平面内两定点的距离是 8 写出到这两定点的距离的和是 10 的点的 轨迹的方程 分析 先根据题意判断轨迹 再建立直角坐标系 采用待定系数法得出轨迹方程 解 这个轨迹是一个椭圆 两个定点是焦点 用F1 F2表示 取过点 F1和 F2的 直线为 x 轴 线段 F1F2的垂直平分线为 y 轴 建立直角坐标系 2a 10 2c 8 a 5 c 4 b2 a2 c2 52 45 9 b 3 因此 这个椭圆的标准方程是 请大家再想一想 焦点F1 F2放在 y 轴上 线段 F1F2的垂直平分 练习1 写出适合下列条件的椭圆的标准方程 练习2 下列各组两个椭圆中 其焦点相同的是 第 6 页 共 8 页 由学生口答 答案为D 四 小结 1 定义 椭圆是平面内与两定点 F1 F2的距离的和等于常数 大于 F1F2 的点的轨迹 3 图形如图 2 15 2 16 4 焦点 F1 c 0 F2 c 0 F1 0 c F2 0 c 五 布置作业五 布置作业 1 如图 2 17 在椭圆上的点中 A1与焦点 F1的距离最小 A1F1 2 A2 F1的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论