简单几何体习题精选精讲_第1页
简单几何体习题精选精讲_第2页
简单几何体习题精选精讲_第3页
简单几何体习题精选精讲_第4页
简单几何体习题精选精讲_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

习题精选精讲 1 1 A BC D E A1 B1 C1 简单几何体简单几何体 1 棱柱 棱柱 最常见的多面体最常见的多面体 空间直线与平面的只研究位置关系 没有大小和形状的研究 而具体的几何体除位置关系外 还有大小和形状的区别 几何体按形状分两大类 一是由平面围成的多面体 如正方体 二是由曲面围成的旋转体 如球 棱柱是常见的多面体 它有两个本质属性 有两个面 底面 互相平行 其余各面 侧面 每相邻两个面的公共边 侧棱 都互相 平行 棱柱在高考中是常考的一种载体 除考查空间线面关系 空间角和距离 外 还有面积 体积计算问题的考查 例例 1 1 如图 在直三棱柱 ABC A1B1C1中 AB BC D E 分别为 BB1 AC1的中点 证明 ED 为异面直线 BB1与 AC1的公垂线 设 AA1 AC AB 求二面角 A1 AD C1的大小 2 解析解析 1 设 O 为 AC 中点 连接 EO BO 则 EOC1C 又 C1CB1B 所以 EODB 1 2 EOBD 为平行四边形 ED OB AB BC BO AC 又平面 ABC 平面 ACC1A1 BO 面 ABC 故 BO 平面 ACC1A1 ED 平面 ACC1A1 BD AC1 ED CC1 ED BB1 ED 为异面直线 AC1与 BB1的公垂线 连接 A1E 由 AA1 AC AB 可知 A1ACC1为正方形 2 A1E AC1 又由 ED 平面 ACC1A1和 ED 平面 ADC1知平面 ADC1 平面 A1ACC1 A1E 平面 ADC1 作 EF AD 垂足为 F 连接 A1F 则 A1F AD A1FE 为二面角 A1 AD C1的 平面角 不妨设 AA1 2 则 AC 2 AB ED OB 1 EF 2 AE ED AD 2 3 tan A1FE A1FE 60 3 所以二面角 A1 AD C1为 60 解析解析 2 如图 建立直角坐标系 O xyz 其中原点 O 为 AC 的中点 设 A a 0 0 B 0 b 0 B1 0 b 2c 则 C a 0 0 C1 a 0 2c E 0 0 c D 0 b c 0 b 0 0 0 2c ED BB 1 0 ED BB1 ED BB 1 又 2a 0 2c AC 1 0 ED AC1 ED AC 1 所以 ED 是异面直线 BB1与 AC1的公垂线 不妨设 A 1 0 0 则 B 0 1 0 C 1 0 0 A1 1 0 2 1 1 0 1 1 0 0 0 2 BCAB AA 1 0 0 即 BC AB BC AA1 又 BC ABBC AA 1 AB AA1 A A BC D E A1 B1 C1 O F A B C D E A1 B1 C1 O z x y 习题精选精讲 2 2 BC 平面 A1AD 又 E 0 0 1 D 0 1 1 C 1 0 1 1 0 1 1 0 1 0 1 0 ECAEED 0 0 即 EC AE EC ED 又 AE ED E EC AEEC ED EC 面 C1AD cos 即得和的夹角为 60 ECBC 1 2ECBC 所以二面角 A1 AD C1为 60 2 棱锥 棱锥 最简单的多面体最简单的多面体 棱锥是一种简单的多面体 它有两个主要特征 有一个形状是多边形的底面 其他各面是有一个公共顶点的三角形 这些三角形是 棱锥的侧面 三棱锥是最简单的棱锥 也是最简单的多面体 四面体 多面体的研究往往归结到三棱锥来 正像多边形的研究要归结到三角形 一样 三棱锥常成为多面体考题的载体 故有人说 考多面体说到底是在考三棱锥 例例 2 2 I 给出两块相同的正三角形纸片 如图 1 图 2 要求用其中一块剪拼成一个三棱锥模型 另一块剪拼成一个正三棱 柱模型 使它们的全面积都与原三角形的面积相等 请设计一种剪拼方法 分别用虚线标示在图 1 图 2 中 并作简要说明 II 试比较你剪拼的正三棱锥与正三棱柱的体积的大小 III 如果给出的是一块任意三角形的纸片 如图 3 要求剪栟成一个直三棱柱 使它的全面积与给出的三角形的面积相等 请设计 一种剪拼方法 用虚线标示在图 3 中 并作简要说明 解析解析 解 I 如图 1 沿正三角形三边中点连线折起 可拼得一个正三棱锥 如图 2 正三角形三个角上剪出三个相同的四边形 其较长的一组邻边边长为三角形边长的 有一组对角为直角 余下部分按虚线 4 1 折起 可成一个缺上底的正三棱柱 而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底 II 依上面剪拼方法 有 锥柱 VV 推理如下 设给出正三角形纸片的边长为 2 那么 正三棱锥与正三棱柱的底面都是边长为 1 的正三角形 其面积为 现在计算它们的高 4 3 3 6 2 3 3 2 1 2 锥 h 6 3 30 2 1 tgh柱 0 24 223 4 3 9 6 6 3 4 3 3 1 锥柱锥柱 hhVV 所以 锥柱 VV III 如图 3 分别连结三角形的内心与各顶点 得三条线段 再以这三条线段的中点为顶点作三角形 以新作的三角形为直棱柱的底 面 过新三角形的三个顶点向原三角形三边作垂线 沿六条垂线剪下三个四边形 可心拼成直三棱柱的上底 余下部分按虚线折起 习题精选精讲 3 3 成为一个缺上底的直三棱柱 即可得到直三棱柱 3 球 球 与正多面体相关与正多面体相关 与球有关的组合体问题 一种是内切 一种是外接 明确切点和接点的位置 确定有关元素间的数量关系并作出合适的截面图 球内切于正方体 切点为正方体各个面的中心 正方体的棱长等于球的直径 球外接于正方体 正方体的顶点均在球面上 正方体 的对角线等于球的直径 球与多面体的组合体 通过多面体的一条侧棱和球心 或 切点 接点 作出一个截面图 例例 3 甲球内切于某个正方体的各个面 乙球内切于该正方体的各条棱 丙球外接于该正方体 则三球表面积之比为 解析解析 由正方体与球的对称性 球心一定和正方体的中心重合 画出适当的球的大圆 可得正方体的棱长和各球半径的关系 设正方体的棱长为 a 如图 1 所示 正方体的内切球与正方体的六个面有六个公共点 点的位置分别在六个正方形的中心 经过四个切点的轴截面是正 方体的截面 ABCD 的内切圆 2 1 a r 22 11 4arS 如图 2 所示 球与正方体各棱的切点在每条棱的中点 经过四个切点的球的轴截面 大圆 是正方形 ABCD 的外接圆 2 2 2 ar 22 22 24arS 如图 3 所示 正方体的各个顶点在球面上 球的一个大圆是矩形 ABCD 的外接圆 2 3 3 ar 2 3 3 aS 由上可知 3 2 1 321 SSS 点评点评 1 两个几何体相接是一个几何体的所有顶点 包括某一面周线上所在点或一个面的所有点 都在另一个几何体的 表面上 2 两个几何体相切是指一个几何体的各面与另一个几何体的各面相切 解决几何体相切或相接问题 常常利用截面来暴露这 两个几何体之间的相互关系 从而使空间问题转化为平面问题来解决 通法通法 特法特法 妙法妙法 1 1 三角形法 三角形法 重要元素集中地重要元素集中地 在立体几何中 要善于把长度和角度放到三角形中去解决 正三棱锥中的两个重要直角三角形 一个是高 斜高 边心距组成的 直角三角形 另一个是高 侧棱 底面半径组成的直角三角形 几乎正棱锥中所有重要的量都在这两个直角三角形中 习题精选精讲 4 4 题题 1 1 棱锥 P ABCD 的底面是正方形 侧面 PAB PAD 都垂直于底面 另两侧面与底面成 45 角 M N 分别为 BC CD 的中点 最长的侧棱为 15 cm 求 1 棱锥的高 2 底面中心 O 到平面 PMN 的距离 解析解析 如图所示 1 设高为 h 由平面 PAB 平面 PAD 都垂直于底面 得 PA 底面 AC 又 PBA 45 PA AB h AC h 2 由 PA2 AC2 PC2及 PC 15 得 h 5 cm 3 2 BD AC BD PA BD 平面 PAC 又 MN BD MN 平面 PAQ 平面 PAQ 平面 PMN 作 OH PQ 于 H 则 OH 之长即为所求 作 AG PQ 于 G 在 Rt PAQ 中 AQ hAC 4 23 4 3 PQ 4 34 22 hAQPA AG 17 173 h PQ AQPA 再由得 3 1 QA QO AG OH OH cm 17 515 17 17 3 1 hAG 点评点评 由于在棱锥中 随处可以找到解题必需的三角形 因此平面几何知识和解三角形的知识往往成为正确解题的关键 2 2 截面法 截面法 空间图形的平面特写空间图形的平面特写 解决球与多面体的组合问题 重要的是选好截面图 在截面中对寻找各量之间的关系 从而使空间问题转化为平面问题来解决 题题 2 一个圆锥形漏斗口的内周长为 8 cm 漏斗深 9 6cm 将一个球放进漏斗里 球的最高点比漏斗口所在平面高出 2 4cm 求球的体积 解析解析 作共同的轴截面图 如图 得等腰 PAB 和圆 O 球的最高点 C 球心 O 和圆锥顶点 P 三点共线 D AB PC 依题设 PD 9 6 CD 2 4 AD 4 2 8 过 C 作 A1B1 AB 与 PA PB 的延长线分别交于点 A1 B1 则 A1B1与圆 O 相切于 C 且有 25 1 6 9 12 1 PD PC AD CA A1C 1 25AD 5 PA1 13 22 1 PCCA 记 PA1与圆 O 的切点为 E 则 A1C A1E 习题精选精讲 5 5 且 PEO PCA1 得 PE PA1 A1E 13 5 8 CA OE PC PE 1 OE 3 10 1 PC CAPE 即得球半径 R 所以它的体积为 cm3 3 10 81 4000 3 4 3 RV 点评点评 作出圆锥与球共同的轴截面 则圆锥与球的重要几何量与几何关系都在这一平面图形上充分展现出来了 通过对此平 面图形的分析 即可求出球半径 从而求得球体积 3 3 投影法 投影法 几何体的三视图几何体的三视图 要作出空间物体在投影面上的投影 其实质就是通过物体上的点 线 面作出一系列的投影线与投影面的交点 并根据物体上的线 面关系 对交点进行恰当的连线 题题 3 3 已知某几何体的俯视图是如图 5 所示的矩形 正视图 或称主视图 是一个底边长为 8 高为 4 的等腰三角形 侧视图 或称左视图 是一个底边长为 6 高为 4 的等腰三角形 1 求该几何体的体积 V 2 求该几何体的侧面积 S 解析解析 由题设可知 几何体是一个高为 4 的四棱锥 其底面是长 宽分别为 8 和 6 的矩形 正侧面及其相对侧面均为边长为 8 高为 h1的等腰三角形 左 右侧面均为底边长为 6 高为 h2的等 腰三角形 1 几何体的体积为 1 8 6464 3 V 2 正侧面及相对侧面底面边上的高为 534 22 1 h 左 右侧面的底边上的高为 2444 22 2 h 故几何体的侧面积为 11 2 6 4 28 5 4024 2 22 S 4 4 换底法 换底法 求三棱锥体积的妙法求三棱锥体积的妙法 三棱锥是最简单的棱锥 它的每个顶点都可以作为顶点 每个面都可以作为棱锥的底面 但无论如何换底面和锥顶 棱锥的体积 不变 题题 4 4 如图 是直角梯形 90 1 2 又 1 120 PCBMPCBPMBCPMBCACACB 直线与直线所成的角为 60 ABPCAMPC 求证 平面 平面 PACABC 求二面角的大小 BACM 求三棱锥的体积 MACP 解析解析 解法一 PCAB PCBC ABBCB 8 6 习题精选精讲 6 6 PCABC 平面 又 PCPAC 平面 PACABC 平面平面 取的中点 则 连结 BCN1CN AN MN 从而 PMCN MNPC MNABC 平面 作 交的延长线于 连结 则由三垂线定理知 NHAC ACHMHACNH 从而为二面角的平面角MHN MACB 直线与直线所成的角为AMPC 0 60 0 60AMN 在中 由余弦定理得ACN 220 2cos1203ANACCNAC CN 在中 AMN 3 cot31 3 MNANAMN 在中 CNH 33 sin1 22 NHCNNCH 在中 MNH 12 3 tan 33 2 MN MNMHN NH 故二面角的平面角大小为MACB 2 3 arctan 3 由 知 为正方形PCMN 0 113 sin120 3212 P MACA PCMA MNCMACN VVVVAC CNMN 11 11 正四面体与正方体正四面体与正方体 在实践中 正方体是最常见的多面体 在理论上 所有的多面体都可看作是由正方体演变而来 我们认定了正方体是多面体的 根基 我们在思考 1 正方体如何演变出正四面体 2 正方体如何演变出正八面体 3 正方体如何演变出正三棱锥 习题精选精讲 7 7 4 正方体如何演变出斜三棱锥 考题考题 1 正四面体化作正方体解 正四面体化作正方体解 四面体的所有棱长都为 2 四个顶点在同一球面上 则此球的表面积为 A 3 B 4 C 3 D 6 3 说明说明 本题如果就正四面体解正四面体 则问题就不是一个小题目了 而是有相当计算量的大题 此时的解法也就沦为拙解 拙解拙解 正四面体棱长为底面 ABC 是边长为的正三角形 ABC 的 22 高线 BD 斜高 VD ABC 的边心距 HD 2 3 2 2 6 2 6 3 1 2 6 6 6 正四面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论