



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章 二元一次方程组1认识二元一次方程组枫林学校 黄 海一、教学目标: (1)理解二元一次方程(组)及其解的概念, 能判别一组数是否是二元一次方程(组)的解;(2)会根据实际问题列简单的二元一次方程或二元一次方程组;(3)通过加深对概念的理解,提高对“元”和“次”的认识,而且能够逐步培养类比分析和归纳概括的能力,了解变与不变的辩证统一的思想.二、教学重点:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;(2)判断一组数是不是某个二元一次方程组的解.教学难点:从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.三、教学过程设计本节课设计了四个教学环节:第一环节:情境引入;第二环节:新课讲解,练习提高;第三环节:课堂小结;第四环节:布置作业.第一环节:情境引入内容:暑假里,第31届夏季奥林匹克运动会在巴西首都里约热内卢奥开幕式 。在男子足球比赛中,巴西队在第一轮比赛中共赛9场,得17分。比赛规定胜一场得3分,平一场得3分,负一场得0分。巴西队在第一轮中只负了2场,那么这个队胜了几场?又平了几场呢?学了这节课后,你就会发现有一种简单的办法可以帮助我们寻找答案。(一) 情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:.(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数儿童人数8,成人票款儿童票款34.由此我们可以得到方程和.第二环节:新课讲解,练习提高内容:(一) 二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:含有两个未知数;所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习。1、4-2+3=0 2、3x+y=0 3、2=4 4、x2+y=05、3x=2+5y 6、+2n=5 7、5a+20b=49(二)二元一次方程组概念的概括师提请学生思考:上面的方程中,的x含义相同吗?y呢?(两个方程中x的表示成人数,y表示儿童数,x、y的含义分别相同.)由于x、y的含义分别相同,因而必同时满足和,我们把这两个方程用大括号联立起来,写成,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如: 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1) (2) (3) (4) (5) (6)(三)因承上面的情境,得出有关方程的解的概念1.方程x+ y = 8中 ,符合实际意义的 x , y 的 值有哪些? 适合一个二元一次方程的一组未知数的值,叫做二元一次方程的一个解.2. 适合方程吗?呢?3.你能找到一组值x,y同时适合方程和吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x=6, y=2是方程x+ y =8的一个解,记作 ;同样,也是方程的一个解,同时 又是方程的一个解.二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,就是二元一次方程组的解.然后,同样呈现一些辨析性练习:(投影)1、根据题意,列出方程组:买5朵郁金香和3朵玫瑰共付90元,买3朵郁金香和5朵玫瑰共付86元,每朵郁金香和玫瑰各多少元?2.下列四组数值中,哪些是二元一次方程的解?(A) (B) (C) (D)3.二元一次方程组的解是( )(A) (B) (C) (D)4.如果是关于x、y方程组的解,那么a ,b .7.写出一个以为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文明班会发言稿
- 时间管理培训课程
- 时间像小马车课件封面
- 2025版生态修复工程爆破作业安全协议
- 二零二五年度地簧门工程安装与验收合同
- 二零二五年度数字化工厂设备资产重组与转让合同
- 2025版跨境电商进口贸易代理服务合同样本
- 二零二五年度高速公路道路施工劳务安全监理合同示范文本
- SQ事业单位二零二五年度校园安保人员聘用合同
- 二零二五年度食品安全技术咨询合同模板
- 医院综合门诊部综合管理体系建设
- 2025至2030年中国SCADA行业市场运行现状及投资规划建议报告
- 2025年中医师承出师考试题库
- 2025年宜昌市猇亭区招聘化工园区专职工作人员(6人)笔试备考试题及答案详解(夺冠)
- uom无人机考试题库及答案2025
- 2025年山西煤矿安全生产管理人员取证考试题库(含答案)
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 混凝土搅拌站实验室质量管理手册47590试卷教案
- 教练技术探索课程一阶段导师讲义
- 电气施工四措两案9.9
- VDA2供货质量保证培训(共108页).ppt
评论
0/150
提交评论