2017新人教版八年级数学下册知识点总结归纳_第1页
2017新人教版八年级数学下册知识点总结归纳_第2页
2017新人教版八年级数学下册知识点总结归纳_第3页
2017新人教版八年级数学下册知识点总结归纳_第4页
2017新人教版八年级数学下册知识点总结归纳_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十六章第十六章 二次根式二次根式 1 二次根式 一般地 式子叫做二次根式 0a a 注意 1 若这个条件不成立 则 不是二次根式 0a a 2 是一个重要的非负数 即 0 aa 2 最简二次根式 必须同时满足下列条件 被开方数中不含开方开的尽的因数或因式不含开方开的尽的因数或因式 被开方数中不含分母不含分母 分母中不含根式不含根式 3 重要公式 1 2 注意使用 0a a a 2 0a a 0a a aa 2 0a a a 2 3 积的算术平方根 积的算术平方根等于积中各因式的算术平方根的 0b 0a baab 积 注意 本章中的公式 对字母的取值范围一般都有要求 4 二次根式的乘法法则 0b 0a abba 5 二次根式比较大小的方法 1 利用近似值比大小 2 把二次根式的系数移入二次根号内 然后比大小 3 分别平方 然后比大小 6 商的算术平方根 商的算术平方根等于被除式的算术平方根除以除式的 0b 0a b a b a 算术平方根 7 二次根式的除法法则 1 0b 0a b a b a 2 0b 0a baba 3 分母有理化 化去分母中的根号叫做分母有理化 具体方法是 分式的分子与分母同乘分母 的有理化因式 使分母变为整式 8 常用分母有理化因式 它们也叫aa 与baba 与bnambnam 与 互为有理化因式 9 最简二次根式 1 满足下列两个条件的二次根式 叫做最简二次根式 被开方数的因数是整数 因式是整 式 被开方数中不含能开的尽的因数或因式 2 最简二次根式中 被开方数不能含有小数 分数 字母因式次数低于 2 且不含分母 3 化简二次根式时 往往需要把被开方数先分解因数或分解因式 4 二次根式计算的最后结果必须化为最简二次根式 10 二次根式化简题的几种类型 1 明显条件题 2 隐含条件题 3 讨论条件题 11 同类二次根式 几个二次根式化成最简二次根式后 如果被开方数相同 这几个二次根式叫 做同类二次根式 12 二次根式的混合运算 1 二次根式的混合运算包括加 减 乘 除 乘方 开方六种代数运算 以前学过的 在有理 数范围内的一切公式和运算律在二次根式的混合运算中都适用 2 二次根式的运算一般要先把二次根式进行适当化简 例如 化为同类二次根式才能合并 除 法运算有时转化为分母有理化或约分更为简便 使用乘法公式等 第十七章第十七章 勾股定理勾股定理 1 勾股定理勾股定理 如果直角三角形的两直角边长分别为 a b 斜边长为 c 那么 a2 b2 c2 2 勾股定理逆定理勾股定理逆定理 如果三角形三边长 a b c 满足 a a2 2 b b2 2 c c2 2 那么这个三角形 是直角三角形 3 经过证明被确认正确的命题叫做定理经过证明被确认正确的命题叫做定理 我们把题设 结论正好相反的两个命题叫做互逆命题 如果把其中一个叫做原 命题 那么另一个叫做它的逆命题 例 勾股定理与勾股定理逆定理 4 直角三角形的性质 1 直角三角形的两个锐角互余 可表示如下 C 90 A B 90 2 在直角三角形中 在直角三角形中 30 30 角所对的直角边等于斜边的一半 角所对的直角边等于斜边的一半 A 30 可表示如下 C 90 BC AB 2 1 3 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半 ACB 90 可表示如下 D 为 AB 的中点 CD AB BD AD 2 1 5 摄影定理 在直角三角形中 斜边上的高线是两直角边在斜边 上的摄影的比例中项 每条直角边是它们在斜边上的摄 影和斜边的比例中项 ACB 90 BDADCD 2 ABADAC 2 CD AB ABBDBC 2 6 常用关系式 由三角形面积公式可得 AB CD AC BC 7 直角三角形的判定 1 有一个角是直角的三角形是直角三角形 2 如果三角形一边上的中线等于这边的一半 那么这个三角形是直角三角形 3 勾股定理的逆定理 如果三角形的三边长 a b c 有关系 那么 222 cba 这个三角形是直角三角形 8 命题 定理 证明 1 命题的概念 判断一件事情的语句 叫做命题 理解 命题的定义包括两层含义 1 命题必须是个完整的句子 2 这个句子必须对某件事情做出判断 2 命题的分类 按正确 错误与否分 真命题 正确的命题 命题 假命题 错误的命题 所谓正确的命题就是 如果题设成立 那么结论一定成立的命题 所谓错误的命题就是 如果题设成立 不能证明结论总是成立的命题 3 公理 人们在长期实践中总结出来的得到人们公认的真命题 叫做公理 4 定理 用推理的方法判断为正确的命题叫做定理 5 证明 判断一个命题的正确性的推理过程叫做证明 6 证明的一般步骤 1 根据题意 画出图形 2 根据题设 结论 结合图形 写出已知 求证 3 经过分析 找出由已知推出求证的途径 写出证明过程 9 三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线 1 三角形共有三条中位线 并且它们又重新构成一个新的三角形 2 要会区别三角形中线与中位线 三角形中位线定理 三角形的中位线平行于第三边 并且等于它的一半 三角形中位线定理的作用 位置关系 可以证明两条直线平行 数量关系 可以证明线段的倍分关系 常用结论 任一个三角形都有三条中位线 由此有 结论 1 三条中位线组成一个三角形 其周长为原三角形周长的一半 结论 2 三条中位线将原三角形分割成四个全等的三角形 结论 3 三条中位线将原三角形划分出三个面积相等的平行四边形 结论 4 三角形一条中线和与它相交的中位线互相平分 结论 5 三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等 10 数学口诀 平方差公式 平方差公式有两项 符号相反切记牢 首加尾乘首减尾 莫与完全公 式相混淆 完全平方公式 完全平方有三项 首尾符号是同乡 首平方 尾平方 首尾二倍放 中央 首 尾括号带平方 尾项符号随中央 第十八章第十八章 四边形四边形 1 四边形的内角和与外角和定理 1 四边形的内角和等于 360 2 四边形的外角和等于 360 几何表达式举例 1 A B C D 360 2 1 2 3 4 360 2 多边形的内角和与外角和定理 1 n 边形的内角和等于 n 2 180 2 任意多边形的外角和等于 360 几何表达式举例 略 3 平行四边形的性质 因为 ABCD 是平行四边形 5 4 3 2 1 邻角互补 对角线互相平分 两组对角分别相等 两组对边分别相等 两组对边分别平行 几何表达式举例 1 ABCD 是平行四边形 AB CD AD BC 2 ABCD 是平行四边形 AB CD AD BC 3 ABCD 是平行四边形 ABC ADC DAB BCD 4 ABCD 是平行四边形 OA OC OB OD 5 ABCD 是平行四边形 CDA BAD 180 4 平行四边形的判定 是平行四边形 对角线互相平分 一组对边平行且相等 两组对角分别相等 两组对边分别相等 两组对边分别平行 ABCD 5 4 3 2 1 几何表达式举例 1 AB CD AD BC 四边形 ABCD 是平行四边形 2 AB CD AD BC 四边形 ABCD 是平行四边形 3 A BC D 12 3 4 A BC D A B D O C A B D O C 5 矩形的性质 因为 ABCD 是矩形 3 2 1 对角线相等 四个角都是直角 有通性 具有平行四边形的所 2 1 3 几何表达式举例 1 2 ABCD 是矩形 A B C D 90 3 ABCD 是矩形 AC BD 6 矩形的判定 四边形 ABCD 是矩形 边形 对角线相等的平行四 三个角都是直角 一个直角 平行四边形 3 2 1 1 2 3 几何表达式举例 1 ABCD 是平行四边形 又 A 90 四边形 ABCD 是矩形 2 A B C D 90 四边形 ABCD 是矩形 3 7 菱形的性质 因为 ABCD 是菱形 3 2 1 角 对角线垂直且平分对 四个边都相等 有通性 具有平行四边形的所 几何表达式举例 1 2 ABCD 是菱形 AB BC CD DA 3 ABCD 是菱形 AC BD ADB CDB 8 菱形的判定 四边形四边形 ABCD 是菱形 边形 对角线垂直的平行四 四个边都相等 一组邻边等 平行四边形 3 2 1 几何表达式举例 1 ABCD 是平行四边形 DA DC 四边形 ABCD 是菱形 2 AB BC CD DA 四边形 ABCD 是菱形 3 ABCD 是平行四边形 AC BD 四边形 ABCD 是菱形 9 正方形的性质 因为 ABCD 是正方形 3 2 1 分对角 对角线相等垂直且平 角都是直角 四个边都相等 四个 有通性 具有平行四边形的所 CD A B 1 AB CD O 2 3 几何表达式举例 1 2 ABCD 是正方形 AB BC CD DA A B C D 90 3 ABCD 是正方形 AC BD AC BD 10 正方形的判定 几何表达式举例 1 ABCD 是平行四边形 又 AD AB ABC 90 四边形 ABCD 是正方形 C D B A O C D B A O A D B C A D B C A D B C O A D B C O 四边形 ABCD 是正方形 一组邻边等矩形 一个直角 菱形 一个直角一组邻边等 平行四边形 3 2 1 3 ABCD 是矩形 又 AD AB 四边形 ABCD 是正方形 2 ABCD 是菱形 又 ABC 90 四边形 ABCD 是正方形 11 等腰梯形的性质 因为 ABCD 是等腰梯形 3 2 1 对角线相等 同一底上的底角相等 两底平行 两腰相等 几何表达式举例 1 ABCD 是等腰梯形 AD BC AB CD 2 ABCD 是等腰梯形 ABC DCB BAD CDA 3 ABCD 是等腰梯形 AC BD 12 等腰梯形的判定 四边形 ABCD 是等腰梯形 对角线相等 梯形 底角相等 梯形 两腰相等 梯形 3 2 1 3 ABCD 是梯形且 AD BC AC BD ABCD 四边形是等腰梯形 几何表达式举例 1 ABCD 是梯形且 AD BC 又 AB CD 四边形 ABCD 是等腰梯形 2 ABCD 是梯形且 AD BC 又 ABC DCB 四边形 ABCD 是等腰梯形 13 平行线等分线段定理与推论 1 如果一组平行线在一条直线上截得的线段相等 那么在其 它直线上截得的线段也相等 2 经过梯形一腰的中点与底平行的直线必平分另一腰 如图 3 经过三角形一边的中点与另一边平行的直线必平分第三边 如图 2 3 几何表达式举例 1 2 ABCD 是梯形且 AB CD 又 DE EA EF AB CF FB 3 AD DB 又 DE BC AE EC 14 三角形中位线定理 三角形的中位线平行第三边 并且等于 它的一半 几何表达式举例 AD DB AE EC DE BC 且 DE BC 2 1 15 梯形中位线定理 梯形的中位线平行于两底 并且等于两 底和的一半 几何表达式举例 ABCD 是梯形且 AB CD 又 DE EA CF FB EF AB CD 且 EF AB CD 2 1 EF D A B C E D CB A EF D A B C E D CB A A BC D O A BC D O CD A B 一 基本概念 四边形 四边形的内角 四边形的外角 多边形 平行线间的距离 平行四边形 矩形 菱形 正方形 中心对称 中心对称图形 梯形 等腰梯 形 直角梯形 三角形中位线 梯形中位线 二 定理 中心对称的有关定理 1 关于中心对称的两个图形是全等形 2 关于中心对称的两个图形 对称点连线都经过对称中心 并且被对称中心平 分 3 如果两个图形的对应点连线都经过某一点 并且被这一点平分 那么这两个 图形关于这一点对称 三 公式 1 S 菱形 ab ch a b 为菱形的对角线 c 为菱形的边长 h 为 c 边上的高 2 1 2 S 平行四边形 ah a 为平行四边形的边 h 为 a 上的高 3 S 梯形 a b h Lh a b 为梯形的底 h 为梯形的高 L 为梯形的中位线 2 1 四 常识 1 若 n 是多边形的边数 则对角线条数公式是 2 3n n 2 规则图形折叠一般 出一对全等 一对相似 3 如图 平行四边形 矩形 菱形 正方形的从属关系 4 常见图形中 仅是轴对称图形的有 角 等腰三角形 等边三角形 正奇边形 等腰梯形 仅是中心对称图形的有 平行四边形 是双对称图形的 有 线段 矩形 菱形 正方形 正偶边形 圆 注意 线段有两条对称 轴 5 梯形中常见的辅助线 A BE F D E C A B D C A B D C A B D C E F FA B D C A B D C A B D C A B D C G FE E E E 6 几个常见的面积等式和关于面积的真命题 如图 若 ABCD 是平行四边形 且 AE BC AF CD 那么 AE BC AF CD 如图 若 ABC 中 ACB 90 且 CD AB 那么 AC BC CD AB 如图 若 ABCD 是菱形 且 BE AD 那么 AC BD 2BE AD 如图 若 ABC 中 且 BE AC AD BC 那么 AD BC BE AC 如图 若 ABCD 是梯形 E F 是两腰的中点 且 AG BC 那么 EF AG AD BC AG 2 1 如图 DC BD S S 2 1 如图 若 AD BC 那么 1 S ABC S BDC 2 S ABD S ACD 第十八章第十八章 一次函数一次函数 一 常量 变量 在一个变化过程中 数值发生变化的量叫做 变量 数值始终不变的量叫做 常量 二 函数的概念 函数的定义 一般的 在一个变化过程中 如果有两个变量 x 与 y 并且对于 x 的每 一个确定的值 y 都有唯一确定的值与其对应 那么我们就说 x 是自变量 y 是 x B A C D S1S2 B D A C A B D CG FE B A E CD B A E F C D O B A E C D B A C D 的函数 三 函数中自变量取值范围的求法 1 用整式表示的函数 自变量的取值范围是全体实数 2 用分式表示的函数 自变量的取值范围是使分母不为 0 的一切实数 3 用寄次根式表示的函数 自变量的取值范围是全体实数 用偶次根式表示的函数 自变量的取值范围是使被开方数为非负数的一切实数 4 若解析式由上述几种形式综合而成 须先求出各部分的取值范围 然后再求 其公共范围 即为自变量的取值范围 5 对于与实际问题有关系的 自变量的取值范围应使实际问题有意义 四 函数图象的定义 一般的 对于一个函数 如果把自变量与函数的每对对应 值分别作为点的横 纵坐标 那么在坐标平面内由这些点组成的图形 就是这个函 数的图象 五 用描点法画函数的图象的一般步骤 1 列表 表中给出一些自变量的值及其对应的函数值 注意 列表时自变量由小到大 相差一样 有时需对称 2 描点 在直角坐标系中 以自变量的值为横坐标 相应的函数值为纵坐标 描出表格中数值对应的各点 3 连线 按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来 六 函数有三种表示形式 1 列表法 2 图像法 3 解析式法 七 正比例函数与一次函数的概念 一般地 形如 y kx k 为常数 且 k 0 的函数叫做正比例函数 其中 k 叫做比例系 数 一般地 形如 y kx b k b 为常数 且 k 0 的函数叫做一次函数 当 b 0 时 y kx b 即为 y kx 所以正比例函数 是一次函数的特例 八 正比例函数的图象与性质 1 图象 正比例函数 y kx k 是常数 k 0 的图象是经过原点的一条直线 我们称它为直线 y kx 2 性质 当 k 0 时 直线 y kx 经过第三 一象限 从左向右上升 即随着 x 的 增大 y 也增大 当 k0 b 0 图像经过一 二 三象限 2 k 0 b 0 图像经过一 三 四象限 3 k 0 b 0 图像经过一 三象限 4 k 0 b 0 图像经过一 二 四象限 5 k 0 b 0 图像经过二 三 四象限 6 k 0 b 0 图像经过二 四象限 一次函数表达 式的确定 求一次函数 y kx b k b 是常数 k 0 时 需要由两个点来 确定 求正比例函数 y kx k 0 时 只需一个点即可 一次函数重点知识归纳 一次函数重点知识归纳 1 变量 变量 在一个变化过程中可以取不同数值的量 常量 常量 在一个变化过程中只能取同一数值的量 2 函数 函数 一般的 在一个变化过程中 如果有两个变量 x 和 y 并且对于 x 的每一个确定的值 y 都有唯一确定的值与其对应 那么我们就把 x 称为自变量自变量 把 y 称为因变量因变量 y 是 x 的函数函数 判断 Y 是否为 X 的函数 只要看 X 取值确定的时候 Y 是否有唯一确定的值与之对应 3 定义域 定义域 一般的 一个函数的自变量允许取值的范围 叫做这个函数的定义域 4 确定函数定义域的方法 确定函数定义域的方法 1 关系式为整式时 函数定义域为全体实数 2 关系式含有分式时 分式的分母不等于零 3 关系式含有二次根式时 被开放方数大于等于零 4 关系式中含有指数为零的式子时 底数不等于零 5 实际问题中 函数定义域还要和实际情况相符合 使之有意义 5 函数的解析式 函数的解析式 用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6 6 函数的图像 函数的图像 一般来说 对于一个函数 如果把自变量与函数的每对对应值分别作为点的横 纵坐标 那 么坐标平面内由这些点组成的图形 就是这个函数的图象 7 描点法画函数图形的一般步骤 描点法画函数图形的一般步骤 第一步 列表 表中给出一些自变量的值及其对应的函数值 第二步 描点 在直角坐标系中 以自变量的值为横坐标 相应的函数值为纵坐标 描出表 格中数值对应的各点 第三步 连线 按照横坐标由小到大的顺序把所描出的各点用平滑曲线连 接起来 8 函数的表示方法 函数的表示方法 列表法 一目了然 使用起来方便 但列出的对应值是有限的 不易看出自变量与函数之间 的对应规律 解析式法 简单明了 能够准确地反映整个变化过程中自变量与函数之间的相依关系 但有 些实际问题中的函数关系 不能用解析式表示 图象法 形象直观 但只能近似地表达两个变量之间的函数关系 一次函数图形与性质一次函数图形与性质 1 1 一次函数的定义 一次函数的定义 一般地 形如 是常数 且 的函数 叫做一次函数 其中 x 是自变量 ykxb kb0k 当时 一次函数 又叫做正比例函数 0b ykx 一次函数的解析式的形式是 要判断一个函数是否是一次函数 就是判断是否能 ykxb 化成以上形式 当 时 仍是一次函数 0b 0k ykx 当 时 它不是一次函数 0b 0k 正比例函数是一次函数的特例 一次函数包括正比例函数 2 正比例函数及性质 正比例函数及性质 一般地 形如 y kx k 是常数 k 0 的函数叫做正比例函数 其中 k 叫做比例系数 注 正比例函数一般形式 y kx k 不为零 k 不为零 x 指数为 1 b 取零 当 k 0 时 直线 y kx 经过三 一象限 从左向右上升 即随 x 的增大 y 也增大 当 k0 时 图像经过一 三象限 k0 y 随 x 的增大而增大 k0 时 向上平移 当 b0 图象经过第一 三象限 k0 图象经过第一 二象限 b0 y 随 x 的增大而增大 k0 时 将直线 y kx 的图象向上平移 b 个单位 当 b0b0 图象从左到右上升 y 随 x 的增大而增大 经过第一 二 四象限经过第二 三 四象限经过第二 四象限 k0 时 向 上平移 当 b0 时 直线经过一 三象限 k0 y 随 x 的增大而增大 从左向右上升 k0 时 将直线 y kx 的图象向上平移个单位 b b 0 时 将直线 y kx 的图象向下平移个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论