




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏州市学案 函数的奇偶性与对称性一、课前准备:【自主梳理】1.奇偶函数的定义:一般地,对于函数的定义域内的_一个,都有_,那么就叫做奇函数对于函数的定义域的_一个,都有_,那么就叫做偶函数2奇偶函数的性质:具有奇偶性的函数,其定义域关于 对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于_对称(2)一个函数是奇函数的充要条件是它的图像关于_对称;一个函数是偶函数的充要条件是它的图像关于_对称(3)若奇函数的定义域包含0,则_(4)定义在上的任意函数都可以表示成一个奇函数_和一个偶函数_的和(5)在定义域的公共部分内,两个奇函数之积(商)为_;两个偶函数之积(商)为_;一奇一偶函数之积(商)为_(注:取商时应使分母不为0)3函数图像的对称性:(1)定义在上的函数满足,则的图像关于_对称 (2)定义在上的函数满足,则的图像关于_对称 【自我检测】1对于定义在R上的函数,下列判断正确的是_ 若,则函数是偶函数;若,则函数不是偶函数;若,则函数不是奇函数2给出4个函数:;其中 是奇函数; 是偶函数; 既不是奇函数也不是偶函数3.已知为奇函数,则_,_4.函数的图像关于点_对称5.函数,若,则的值为_6.已知函数是定义在的奇函数,则函数的奇偶性是_二、课堂活动:【例1】填空题:(1)函数是_函数(填奇偶性)(2)已知函数,其定义域为,则为偶函数的充要条件为_(3)已知是R上的奇函数,且当时,则的解析式为_(4)若函数是奇函数,则_【例2】判断下列各函数的奇偶性:(1);(2);(3)【例3】(1)已知函数是偶函数,当时,又的图象关于直线对称,求在上的解析式;(2)若函数是偶函数,定义域为且在区间上为增函数,解关于不等式课堂小结三、课后作业1.下列函数中,是偶函数的是_. 2.若函数是奇函数,则实数 .3.奇函数的定义域是,当时,则在上的表达式为_.4.已知是偶函数,是奇函数,若,则的解析式是_.5.若函数是偶函数,且它的值域为,则该函数的解析式为_.6.若函数是定义在上的奇函数,且在上为减函数,若,则实数a的取值范围为_.7.若奇函数满足则_.8.已知是定义在上的偶函数,并满足,当时,则的值为_.9.函数是奇函数,且当时是增函数,若,求不等式的解集.10.已知函数对一切,都有.(1)求证:是奇函数; (2)若,用表示.四、纠错分析错题卡题 号错 题 原 因 分 析582013届高二文科基础复习资料(1) 学案10 函数的奇偶性与对称性答案一、课前准备:【自主梳理】1.任意,任意,.2.(1)原点,原点.(2)原点,轴.(3)0.(4),.(5)偶函数,偶函数,奇函数.3.(1)直线.(2)点.【自我检测】1.2.,.3. .4. .5.0.6.奇函数.二、课堂活动:【例1】(1)偶.(2).(3).(4)1.【例2】【解析】(1)由,得定义域为,关于原点不对称,为非奇非偶函数(2)由得定义域为, 为偶函数(3)当时,则,当时,则,综上所述,对任意的,都有,为奇函数【例3】【解析】(1)的图象关于直线对称,即当时,又为偶函数,时,(2)函数是偶函数,定义域为且在区间上为增函数,在上为减函数.由得:,即:或,又,即不等式的解为:三、课后作业1.2. 函数是实数R上的奇函数 3. 4. 5. 6. 7. 8.2.5【解析】9.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年矿山安全考试试题及答案
- 2025年色彩美术考研真题及答案
- 高端医药中间体生产线建设项目建筑工程方案
- 学生手册报告单评语大全
- 二氧化碳捕集利用项目节能评估报告
- 农村集体粮仓租赁及粮食收储服务合同
- 离婚协议范本:财产分配及子女抚养权协议
- 双方离婚协议中车辆及财产分割具体归属约定书
- 老旧供水管网改造工程技术方案
- 丹东彩钢板屋顶施工方案
- 47届世赛江苏省选拔赛轨道车辆技术项目技术工作文件v1.1
- 全国中小学“学宪法、讲宪法”知识素养竞赛题库及答案
- 2024年秋新冀教版三年级上册英语全册教学课件(新版教材)
- 第1-2课时Listening Speaking Unit 2 Transportation-课件 -【中职专用】高一学年英语同步课堂(高教版2023修订版·基础模块1)
- 十四年抗战史
- CJJT 164-2011 盾构隧道管片质量检测技术标准
- 2024-2034年全球及中国云母和绢云母行业市场发展分析及前景趋势与投资发展研究报告
- 标准方向讲解
- 2024年成都隆科城乡发展集团有限公司招聘笔试冲刺题(带答案解析)
- 口腔种植技术课件
- QBT 2959-2008 钢板网行业标准
评论
0/150
提交评论