高考数学中的恒成立问题与存在性问题_第1页
高考数学中的恒成立问题与存在性问题_第2页
高考数学中的恒成立问题与存在性问题_第3页
高考数学中的恒成立问题与存在性问题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 恒成立恒成立问题问题 的解法的解法 常用方法 函数性函数性质质法 法 主参主参换换位法 位法 分离参数法 分离参数法 数形数形结结合法合法 一 函数性一 函数性质质法法 1 一次函数型 给定一次函数 若在 m n 内恒有 则根据函数的 0 f xaxb a yf x 0f x 图象 直线 可得上述结论等价于 同理 若在 m n 内恒有 则有 0 0 nf mf 0f x 0 0 nf mf 例 1 对满足的所有实数 求使不等式恒成立的的取值范围 2p p 2 12xpxpxx x 略解 略解 不等式即为 设 则在上恒大 2 1 210 xpxx 2 1 21f pxpxx f p 2 2 于 0 故有 即 2 0 2 f f 01 034 2 2 x xx31 11 xx xx 或 或 13xx 或 2 二次函数 二次函数 若二次函数 或 在 R 上恒成立 则有 或 2 0 0f xaxbxc a 0 0 0 a 0 0 a 若二次函数 或 在指定区间上恒成立 可以利用韦达定理以及根 2 0 0f xaxbxc a 0 的分布等知识求解 例 2 已知函数 若对于任一实数 与的值至少 2 22 41 f xmxm xg xmx x f x g x 有一个为正数 则实数的取值范围是 m A 0 2 B 0 8 C 2 8 D 0 选 B 例 3 设 当时 都有恒成立 求的取值范围 2 22f xxax 1 x f xa a 解 设 2 22F xf xaxaxa 1 当时 即时 对一切 恒成立 4 1 2 0aa 21a 1 x 0F x 2 当时 由图可得以下充要条件 4 1 2 0aa nmo x y nmo x y 1o x y 2 即 综合得的取值范围为 3 1 0 1 0 2 1 2 f a 1 2 0 30 1 aa a a 32a a 例 4 关于的方程恒有解 求的范围 x9 4 340 xx a a 解法 设 则 则原方程有解即方程有正根 3xt 0t 2 4 40ta t 12 12 0 4 0 40 xxa x x 2 4 160 4 a a 8a 3 其它函数 其它函数 恒成立 若的最小值不存在 则恒成立的下界0 0f x min 0f x f x 0f x f x 恒成立 若的最大值不存在 则恒成立的上界0 0f x max 0f x f x 0f x f x 例 5 设函数 其中常数 32 1 1 424 3 f xxa xaxa 1a 1 讨论的单调性 f x 2 若当时 恒成立 求的取值范围 s 5 u c o m 0 x 0f x a 解 2 由 I 知 当时 在或处取得最小值 0 x xfax2 0 x aaaaaaaf2424 2 1 2 3 1 2 23 aaa244 3 4 23 af24 0 则由题意得 即 0 0 0 2 1 f af a 1 4 3 6 0 3 240 a a aa a 16a 1 6 a 二 主参二 主参换换位法 位法 某些含参不等式恒成立问题 在分离参数会遇到讨论的麻烦或者即使能容易分离出参 数与变量 但函数的最值却难以求出时 可考虑把主元与参数换个位置 再结合其它知识 往往会取得出 奇制胜的效果 例 6 已知函数 其中为实数 32 3 1 1 32 a f xxxax a 1 已知函数在处取得极值 求的值 f x1x a 2 已知不等式对任意都成立 求实数的取值范围 2 1fxxxa 0 a x 3 解 由题设知 对都成立 即对 22 3 1 1axxaxxa 0 a 22 2 20a xxx 都成立 设 则是一个以为自变量的一次 0 a 22 2 2g axaxx aR g aa 函数 恒成立 则对 为上的单调递增函数 所以对 2 20 x xR g aR 0 a 恒成立的充分必要条件是 于是的取值范围是 0g a 0 0g 2 20 xx 20 x x 20 xx 三 三 分离参数法 分离参数法 利用分离参数法来确定不等式 为实参数 恒成立时参数的取 0f x Dx 值范围的基本步骤 1 将参数与变量分离 即化为 或 恒成立的形式 gf x gf x 2 求在上的最大 或最小 值 f xxD 3 解不等式 或 求得的取值范围 max gf x mingf x 适用适用题题型 型 1 参数与变量能分离 2 函数的最值易求出 例 7 当时 恒成立 则的取值范围是 1 2 x 2 40 xmx m 解 当时 由得 令 则易知在 1 2 x 2 40 xmx 2 4x m x 2 44 x f xx xx f x 1 2 上是减函数 所以 所以 4 5f x 2 4 5 x x 5m 例 8 已知时 不等式恒成立 求实数的取值范围 xR cos254sin54axxa a 解 原不等式即为 要使上式恒成立 只需 a 5 大于 2 14sin2sin554xxaa 45 a 的最大值 因为 2 14sin2sinxx 2 14sin2sin3xx 即或 解得a 8 5543aa 542aa 2 20 540 54 2 a a aa 045 02 a a 5 4 四 数形四 数形结结合合 对于型问题 利用数形结合思想转化为函数图象的关系再处理 若把等式或 f xg x 不等式进行合理的变形后 能非常容易地画出等号或不等号两边函数的图象 则可以通过画图直接判断 得出结果 尤其对于选择题 填空题这种方法更显方便 快捷 例 9 若对任意 不等式恒成立 则实数的取值范围是 xR xax a A B C D 1a 1a 1a 1a yx yx yax yax x y O 4 选 B 例 10 当 时 恒成立 求 a 的取值范围 1 2 x 2 1 logaxx 答案 12a 例 11 已知关于 x 的方程有唯一解 求实数 2 lg 20 lg 863 0 xxxa a 的取值范围 解 原问题即为 方程有唯一解 2 208630 xxxa 令 则如图所示 要使和在轴上有 2 1 20yxx 2 863yxa 1 y 2 yx 唯一交点 则直线必须位于和之间 包括但不包括 1 l 2 l 1 l 2 l 当直线为时 当直线为时 1 l 163 6 a 2 l 1 2 a 的范围为 a 1631 62 另解 方程在方程上有唯一解有唯一解 2 1263xxa 20 0 x 五 根据函数的奇偶性 周期性等性五 根据函数的奇偶性 周期性等性质质 函数是奇偶性 单调性 周期性都在给定区间上恒成立 例 12 若为偶函数 求的值 sin cos f xxx 解 由题得 对一切恒成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论