数字水准仪原理.doc_第1页
数字水准仪原理.doc_第2页
数字水准仪原理.doc_第3页
数字水准仪原理.doc_第4页
数字水准仪原理.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 数字水准仪的原理与特点武汉大学 李以赫1.1 概述 1963年Fennel厂研制出了编码经纬仪, 加上四十年代已经出现的电磁波测距技术、以后的光电技术、计算机技术和精密机械的发展,到八十年代已开始普遍使用电子测角和电子测距技术。然而,到八十年代末,水准测量还在使用传统仪器。这不仅由于水准仪和水准标尺在空间上是分离的,而且两者的距离可以从1米多变化到100米,因此在技术上引起实现数字化读数的困难。 为了现实水准仪读数的数字化,人们进行了近30年尝试。如蔡司厂的RENI 002A己使测微器读数能自动完成,但粗读数还需人工读出并按键输入,与精读数一起存入存储器,因此还算不上真正的数字水准仪。又如利用激光扫平仪和带探测器的水准标尺,可以使读数由标尺自动记录。由于这种仪器的试验结果还不能达到精密几何水准测量的要求, 因此也没有解决水准测量读数自动化的难题。 直到1990年徕卡测量系统的前身-威特厂在世界上率先研制出数字水准仪NA2000,可以说,从1990年起,大地测量仪器全面己经完成了从精密光机仪器向光机电测一体化的高科技产品的过渡,攻克了大地测量仪器中水准仪数字化读数的这一最后难关。到1994年蔡司厂研制出了数字水准仪DINI 1020,同年拓普康厂也研制出了数字水准仪DL101102。年月徕卡公司向中国市场投放了DNA中文数字水准仪,该仪器具有外形美观,大屏幕中文显示,测量数据可存入内存和PC卡中,并具有适合中国测量规范丰富的机载软件,这意味着数字水准仪将真正为中国用户所接受。数字水准仪具有测量速度快、读数客观、能减轻作业劳动强度、精度高、测量数据便于自动输入计算机和容易实现水准测量内外业一体化的特点, 因此它投放市场后很快受到用户青睐。国外的低精度高程测量盛行使用各种类型的激光定线仪和激光扫平仪, 因此目前数字水准仪主要定位在中精度和高精度水准测量范围, 分为两个精度等级, 中等精度的标准差为:1.01.5mm/Km,高精度的为:0.30.4mmKm。 数字水准仪又称电子水准仪它是在自动安平水准仪的基础上发展起来的。它采用条码标尺,各厂家标尺编码的条码图案不同, 不能互换使用。 仪器完成照准和调焦之后, 标尺条码一方面被成象在望远镜分划板上, 供目视观测,另一方面通过望远镜的分光镜, 标尺条码又被成像在光电传感器(又称探测器)上, 即线阵CC器件上 ,供电子读数,因此如果使用传统水准标尺, 数字水准仪又可以像普通自动安平水准仪一样使用,不过这时的测量精度低于电子测量的精度。特别是对于精密水准测量,由于数字水准仪没有光学测微器, 当成普通自动安平水准仪使用时, 其精度更低。当前数字水准仪采用了原理上相差较大的三种自动电子读数方法:1)相关法 2)几何法 3)相位法1.2 徕卡数字水准测量原理在数字水准测量领域,徕卡是最早推出数字水准仪的,即1990年推出的NA2002,这是测量仪器发展的又一个里程碑。1.2.1相关法原理徕卡公司的数字水准仪采用相关法。它的标尺一面是伪随机条形码供电子测量用, 另一面为区格式分划供光学测量用。望远镜照准标尺并调焦后, 可以将条码清晰地成象在分划板上(图 11)供目视观测,同时条码象也被分光镜成象在探测器上,供电子读数。图1左边是与徕卡数字水准仪配套的水准标尺的伪随机条码,该条码图象已被存储在数字水准仪中作为参考信号。该条码右边是与它对应的区格式分划。在条码标尺上,最窄的条码宽为2.025mm(黑的、黄的或白的),称为基本码宽。在标尺上共有2000个基本码(指4.05m的标尺),不同数量的同颜色的基本码相连在一起,就构成了宽窄不同的码条。 图 12在图左边伪随机码的下面是望远镜照准伪随机码后截取的伪随机码片段。该伪随机码的片段成像在探测器上后, 被探测器转换成电讯号, 即为测量信号。该信号在数字水准仪中与事先已存储好的代表水准标尺伪随机码的参考信号进行比较, 这就是相关过程, 称为相关。在图中将望远镜截取的伪随机码的片段与条码标尺上的伪随机码自下而上的比较,例如先与标尺底部对齐,发现不相同,然后往上移动一个步距(基本码宽),再比较,直到两码相同为止,或说两信号相同为止,即图中左边虚线位置时, 也就是最佳相关位置时, 读数就可以确定。如图 中的.116。图中箭头所指为对应的区格式标尺的位置。移动一个基本码宽来进行比较的精度是不够的,但是可以作为粗相关过程,得到粗读数。再在粗读数上下选取一定范围,减少步距,进行精相关,就可以得到精度足够的读数。由于标尺到仪器的距离不同,条码在探测器上成像的“宽窄”也将不同,即图1中片段条码的“宽窄”会变化,随之电讯号的“宽窄”也将改变,于是引起上述相关的困难。徕卡数字水准仪采用二维相关法来解决,也就是根据精度要求以一定步距改变仪器内部参考信号的“宽窄”与探测器采集到的测量信号相比较,如果没有相同的两信号, 则再改变 ,再进行一维相关, 直到的信号相同为止,可以确定读数。参考信号的“宽窄”与视距是对应的。“宽窄”相同的两信号相比较是求视线高的过程,在此二维相关中, 一维是视距, 另一维是视线高,二维相关之后视距就可以精确算出。可以想象用这种二维相关的计算量会很大, 使读数时间过长。为了缩短读数时间,或说二维相关时间,徕卡数字水准仪内部设计有调焦移动量传感器采集调焦镜的移动量,由此可以反算出概略视距,初步可以确定物像比例。 对仪器内部的参考信号的“宽窄”进行缩放,使其接近探测器采集到的测量信号的“宽窄”,然后再进行二维相关。这样可以减少的相关计算量使读数时间缩短到秒以内。1.2.2 电子部件原理 徕卡数字水准电子部件的原理图表示在图13上,电子部件的功能可用该方框图来说明。望远镜照准标尺后,标尺的条码成像在探测器上,图13左下角的CCD上。其探测器采用电荷藕合器件,简称CCD(Charge Coupled Device)。CCD是由按照一定规律排列的(金属一氧化物一半导体)电容器阵列组成的移位寄存器,线阵长约6.5 mm,由中心距为 m的 个光敏二极管组成其光敏窗口宽度为。一个光敏窗口也称一个象素(或象元)。线阵CCD将接收到的条码图像转换成模拟视频信号。图1-4是这种信号的一个静态示例,纵坐标表示灰度值,其灰度共256级。横坐标为象素的序列,共有256个像素。当CCD输出测量信号时,横坐标就表示时间了。CCD输出的模拟视频信号再输入读出电子部件。读出电子部件将模拟视频信号进行放大,经AD模数转换后,变成数字信号,也称为测量信号。在该信号中以位二进制表示每个像素的256级灰度值,并动态地将256个像素的灰度值依次提供给微处理器。信息处理的核心是单片微处理器,在进行费时的测量函数和参考函数的相关计算时,由门阵列支持它。当望远镜调焦清晰后,图13中的调焦编码器会将采集到的调焦镜位置信息送放大器放大,再经模数转换后,变成数字信号输入微处理器。在微处理器中用下式计算概略视距: f (1)式中f为概略视距; 为望远镜光学参数决定的常数, 为调焦镜的位置。 微处理器算出来的测量数据显示在两行矩阵式显示器上,仪器目镜旁边的键盘或接口用于输入数字命令。在调焦旋钮旁安装了触发测量的测量鍵。全部测量值都可存入内存或存储卡。1.2.3 伪随机码简介及相关计算 伪随机码属于二进制码,它的结构可以预先确定,并且可以重复产生和复制,另一方面它还具有随机特性,即统计特性。GPS中的载波就是用这种伪随机码调制的。该码由线性移位寄存器产生。这种码用在数字水准议中具有可以在1.8100m距离内使用相关法的特点。 标尺上的白码条或黄码条在CCD器件上产生光电流,在电路上为高电平,我们用二进制的“1”表示,相反黑码条用“0”表示。从条码标尺上测量得到的徕卡仪器的参考码序列为:P=1101000110111110111110001110111010000001001001101 (12) 假定望远镜从条码标尺上截取的条码片段经电子部件处理后得到的测量码序列为:Q=100011011111011111000 (13)则相关函数表示为: Rt= (14)式中: N为测量码序列中码元的个数; i =1,2,N为测量码序列中码元的序号; 表示模二和运算,下文将进一步说明; t=0,1,.2,M-N-1,是移位相关的次数,而步距为一个码元; M 为参考码元的个数; 表示两序列中相同元素的个数和减去不同元素的个数和。 此外相关系数表示为: t (15)由于相关函数和相关系数只差一个常数,有些文献中不加区别,统称相关函数。 模二和的运算规则如下: 00=1 01=0 10=0 11=1上述规则表明,相同的码元相加为“1”,不相同的码元相加为“0”,由此可以统计测量码序列和参考码序列相比较时的相同程度。相关函数和相关系数反映了两序列码比较时的相同程度。 设t=0,由(12)和(13)有: P =110100011011111011111 Q =100011011111011111000相关函数序列 R =101000111011011011000由此得相关函数 R0=11101 相关系数 0=1/21=0.05设t=1,由(12)和(13)有: P=101000110111110111110 Q=100011011111011111000 相关函数序列 R=110100010111010111001由此相关函数 R1=1293 相关系数 13210.14图 15同理有t=2时 R2=1385 2=5/21=0.24 t=3时 R3=21 3=1 t=4时 R4=11101 4=0.05 t=5时 R5=10111 5=0.05 t=6时 R6=9123 6=0.14 图15表示了七次相关计算的结果,第4次的相关系数为1,明显突出于其他的相关系数,这个位置就是最佳相关位置,也就是测量信号与参考信号完全相同。设最窄的条码宽为b(2.025mm),那么望远镜截取的标尺条码片段的最下面的边界线到标尺低端面的高度可用下式算出: h=b*t=2.0253=6.75(mm) (16) 如果换算成中丝的视线高读数,只需加一个常数。所谓用软件改正i角,也可以说是改变这个常数。 相关函数和相关系数还有另外一种计算公式,我们将二进制的0用1表示,在电路波形上用有一宽度(持续时间)和单位振幅的正电压表示;将二进制的1用1表示,在电路波形上用同一宽度和振幅的负电压表示。于是相关函数和相关系数可以用普通乘法计算,并定义如下: 相关函数 Rt= (17) 相关系数 t= (18) 我们不难发现,上两式的计算结果与式(14)和(15)是相同的。上两式也是取两序列码中相同码元个数之和减去不同码元个数之和。为了用模二和运算计算相关函数和相关系数,可采用下两式: 相关函数 R=AD (19) 相关系数 = =1 1 (110)式中 A是两序列中相同码元个数之和; D是两序列中不同码元个数之和。 上文列出的是离散型相关函数的计算公式,对于连续型相关函数的计算公式而言,只需将以上各公式中的求和符号改成积分符号并在公式后面加微分符号就可以了。本文不再列出。1.2.4 徕卡数字水准仪的信号运算 徕卡数字水准仪的数值处理以相关原理为基础。这就是将仪器“巳知的”代码,即式(12)所示的二进制码同行阵传感器上标尺条码成像经处理构成的测量信号进行比较。数字水准仪运用相关方法时需要优化的两个参数,也就是“视线高”和“物象比”。仪器的视线高表现为标尺条码像在线性传感器CCD上的上下的位移,另一方面标尺上的条码与其成象的物象比取决于仪器到标尺的距离,或说物象比是视距的函数。因此在徕卡数字水准仪中,二维离散相关系数为:PQ(,)= (111)式中:PQ 为和之间的相关系数; (y)为测量信号; (,h)为参考信号; d 为视距; h 为视线高。 图16表示了测量范围内相关系数的典型函数曲线。其中h表示视线高,d表示视距,为测量信号与参考信号的相关系数。相关得最优的地方就是函数曲线的突出峰值。由最大相关系数,也就是的峰值坐标可以确定视距0和视线高0。1) 最大相关系数的确定 为了在d轴和h轴构成的平面中找到最大相关系数的坐标,必需在整个测量范围内(= 1.8m100m 及h=.4.05)进行系统搜索。我们设想,将h轴分成2000等分,每等分为2.025mm,亦即一个基本码宽。又将d轴分成25等分,每等分为4m,当然第一等分为41.82.2m。在每个等分点画上格网线,构成视距视线高格网。在格网的每一个交叉点上都计算相关系数。例如,计算过程可以这样安排,首先将测量码与1.8m处的参考码相比较,或说相关,将测量码的底部与参考码的底部对齐,然后计算相关系数,这就是图16坐标原点处的相关系数。接下来在h轴方向移动一个步距(2.025mm),再计算相关系数,如此向上共计算2000个相关系数。再将测量码与4m处的参考码相关,又算得2000个相关系数,再与8m,100m的参考码相关,大约要计算200025=50000个相关系数,也就是式(111)必须用5104 次。最后找到相关系数的峰值,该峰值在dh平面上的坐标为d0和h0。这就是我们需要得到的视距和视线高。 用以上方法搜索相关系数的峰值,不但计算量大,而且其精度也不高。在徕卡数字水准仪中是这样减少计算次数和提高精度的,即采用粗相关和精相关的不同方式搜索相关峰值的d坐标和h坐标。2)粗相关 粗相关是在视距视线高格网中探寻相关峰值的近似坐标。因为由焦镜位置已经算出初始概略距离值f,因此可以算出粗相关的探寻范围,在图17中为df两边的黑格网区,于是必要的相关系数的计算次数可以减少约。为了继续减少计算时间,测量信号的动态被少到一位二进制。 为此,单个象素上的信号强度和由信号算出的阈值都减少到和,由此乘法可以用模二和运算(异一非一或一逻辑EXNOR)代替。在数学上,这种一位相关由下列关系式确定: PQ= (112)式中: N为码元的个数;PQ(,h) 为一位相关函数;为探测器信号,即测量信号;为参考信号;为模二和运算。 在图17这个视距视线高格网的每一个交点上都进行相关系数计算。在参考信号同测量信号重合的位置上会出现明显突出于其它相关系数噪声的相关峰值。 3)精相关 图17采用精相关是用来以最高精度确定标尺代码相对于行阵传感器的位置以及标尺代码的物象比的因此在精优化探寻区(图 17)测量信号和参考信号采用8位二进制信息进行相关,因为测量和参考信号会出现不同幅值,所以相关系数用下式规一化: PPQ(d, h)= (113) 此外通过规一化还做到了相关系数总是处在1.0以内。这样在相关结束的时候就可以使测量结果合格了。1.3 几何法原理蔡司采用几何法原理读数。仪器光路见图18,其标尺采用双相位码,标尺上条码的片段见图9。仪器人工照准标尺并调焦后,条码标尺的象经分光镜(图8),一路成象在分划板上,供通过目视观测,一路成象在行阵上,供电子读数。系列的标尺每划分为一个测量间距,其中的码条构成一个码词,每个测量间距的边界由黑白过渡线构成,其下边界到标尺底部的高度,可由该测量间距中的码词判读出来,就象区格式标尺上的注记一样。选择较长的望远镜焦距以及分辨率较高的D行阵(见图8),的长度是分划板直径的好几倍。这就可以为几何法读数提供条件。 I系列测量时,只利用中丝的上下两边各cm的标尺截距,也就是个测量间距来计算视距和视线高。 几何法计算原理见图一10。图中Gi为某测量间距的下边界,Gi+1为上边界,它们在CD行阵上的成像为Bi及Bi+1。它们到光轴(中丝)的距离分别用用i及i+1表示。上象素的宽度是己知的,这两距离在C上所占象素的个数可以由输出的信号得知,因此可以算出i和i+1,也就是说i和i+1是计算视距和视线高的己知数。i和i+1在光轴之上方为负值,在光轴之下方取正值。如果在标尺上看,则是在光轴之上为正, 反之为负。设为测量间距长(cm),用第个测量间距来测量时,则物象比,具体说, 在此是测量间距与该间距在C上成象之比,它可以由图1一10中的相似三角形得出:i=g /(bi+1bi) (114)于是视线高读数为: Hi=g(Ci+l/2)-A(bi+1+bi)/2 (l15)式中i 是第个测量间距从标尺底部数起的序号,可由所属码词判读出来。(1)式右边两部份的几何意义已标注在图一中,读者不难理解,即:g(Ci+1/2)是标尺上第个测量间距的中点到标尺底面的距离。A(bi+1+bi)/2是标尺上第个测量间距的中点到仪器光轴,也就是电视准轴的距离。根据上述符号规则,i+1是正值,i是负值,图1中|bi+1|bi|,因此该顶是负值。因此,公司(1-15)中两项相加取负号。为了提高测量精度,系列取个测量间距平均来计算,也就是取标尺上中丝上下各的范围,即个测量间距取平均来计算。于是物象比为:A(N。) (1) 式中N和b0分别为行阵上测量截距上下边界到光轴的距离。 图 110 视线高的计算公式为:1/NNi=o(i1)(bi+1b)/2 (1-17)由(一16)式算出物象比之后,由物象比可以计算视距,计算原理与用视距丝进行视距测量一样。所不同的是,在此固定基线是在标尺上,而传统视距测量的基线是分划板上的上下视距丝的间距。上述视线高和视距的计算均由仪器电子部件完成。输出的带测量信息的视频信号经模数转换后,由电子计算机进行处理,结果一方面输入存储器,另一方面送至显示器。1.4 相位法原理 拓普康数字水准仪1采用相位法。望远镜光路见图111。标尺的条码像经望远镜、物镜、调焦镜、补偿器的光学零件和分光镜后,分成两路。一路成像在线阵上,用于进行光电转换;另一路成像在分划板上,供目视观测。在图112中表示了D 标尺上部份条码的图案,其中有三种不同的码条,表示参考码,其中有三条mm宽的黑色码条,每两条黑色码条之间是一条1mm宽的黄色码条,以中间的黑码条的中心线为准,每隔mm就有一组码条重复出现。在每组码条左边mm处有一道黑色的码条。在每组一参考码的右边1mm为一道黑色的码条。读者不难发现,每组码条两边的和码条的宽窄不相同。实际上 和 码条的宽度是在1到 mm之间变化,这两种码包含了水准测量时的高度信息。仪器设计时有意安排了它们的宽度按正弦规律变化。其中码条的周期为600mm,码条的周期为570 mm(见图1-12)。当然,码条组两边的黄码条宽度也是按正弦现律变化的,这样在标尺长度方向上就形成了亮暗强度按正弦规律周期变化的亮度波。在图12中条码的下面画出了波形。纵坐标表示黑条码的宽度,横坐标是标尺的长度。实线为码的亮度波,虚线为码的亮度波。由于和两条码变化的周期不同,也可以说和亮度波的波长不同,在标尺长度方向上的每一位置上两亮度波的相位差也不同。这种相位差就好象传统水准标尺上的分划,可由它标出标尺的长度。只要能测出标尺某处的相位差,也就可以知道该处到标尺底部的高度,因为相位差可以做到和标尺长度一一对应,即具有单值性,这也是适当选择两亮度波的波长的原因。在L-101C中,码的周期为,码的周期为,它们的最小公倍数为,因此在长的标尺上不会有相同的相位差。为了确保标尺低端面,或说相位差分划的端点相位差具有唯一性,和码的相位在此错开了。DL102C的标尺与略有区别,的标尺为白底黑码条,码的波长为,码的波长为,最小公倍数为。和码的相位在标尺底部错开了。的标尺与的标尺可以互换使用。当望远镜照准标尺后,标尺上的某一段条码就成像在线阵上,黄条码使产生光电流,随条码宽窄的改变,光电流的强度也在变化。将它进行模数转换()后,得到不同的灰度值。图表示了视距在时,标尺上某一小段成像到上经转换后,得到的不同灰度值(纵坐标),横坐标是上象素的序号,当灰度值逐一输出时,横轴就代表时间了。图表示了含有视距和线高信息的测量信号。如何从测量信号中求出和两亮度波(见图12)的相位差呢?下文用测量人员容易理解的方式来说明。设想图13纵坐标的灰度值就是表示亮度大小的十进位数字,而且横坐标尺寸已放大到和标尺尺寸一致。我们用波长为的正弦曲线去与图13中的离散灰度值曲线拟合,可以得到波的最大振幅和初相位。再用波长为的正弦曲线与图中的曲线相拟合,可以得到波的最大振幅和初相位。我们对最大振幅不太感兴趣,因为随着标尺上的照度不同,最大振幅在各次测量中也不同,对我们求视线高无关紧要。我们求出的和两亮度波的初相位之差就是高度数据。不过这是与上第一个象素对应的位置到标尺底端面的高度。我们不难把它换算成中点象素上的相位差,这就好像是中丝读数。如上述那样人工处理测量信号是很麻烦的,而且很费时间。在系列中采用快速傅里叶变换()计算方法将测量信号在信号分析器中分解成三个频率分量。由和B两信号的相位求相位差,即得到视线高读数。这只是粗读数,因为视距不同时,标尺上的波长与测量信号波长的比例不同。虽然在同一视距上和的波长比例相同,可以求出相位差,或说是视线高,但是可以想象其精度并不高。码是为了提高读数精度和求视距而安排的。设两组码之间的间距为(P30 mm), 它在行阵上成像所占象素的个数为,象素宽为b(25m), 则P在CCD行阵上的成像长度为: I=zb (118)Z可由信号分析中得出,b是CCD光敏窗口的宽度,因此I和P都是已知数据。根据几何光学成像原理,可以像传统仪器用视距丝测量距离的视距测量原理一样求出视距: D=P/If (119)式中f是望远镜物镜的焦距。 同时还可以求出物相比 A=P/I (120)于是将测量信号放大到与标尺上一样时,再进行相位测量,就可以精确得出相位差,即视线高。上述三种数字水准仪的测量原理各有奥妙,三类仪器都经受了各种检验和实际测量的考验,都能胜任精密水准测量作业。1.5 数字水准仪的特点1.5.1数字水准仪的共同特点数字水准仪是以自动安平水准仪为基础,在望远镜中增加了分光镜和探测器(CCD),并采用条码标尺和图像处理电子系统而构成的光机电测量一体化的高科技产品。采用普通标尺时,又可像一般自动安平水准仪一样使用。它与传统仪器相比,有以下共同特点:1) 读数客观。不存在误读、误记问题,没有人为读数误差。2) 精度高。视线高和视距读数都是采用大量条码分划经图像处理后取平均得出来的,因此削弱了标尺分划误差的影响。多数仪器都有进行多次读数取平均的功能,可以削弱外界条件的影响。不熟练的作业人员

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论