函数与导数知识点总结.doc_第1页
函数与导数知识点总结.doc_第2页
函数与导数知识点总结.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数与导数1映射:注意 第一个集合中的元素必须有象;一对一,或多对一。2函数值域的求法:分析法 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、距离、绝对值的意义等);利用函数有界性( 、 、 等);导数法3复合函数的有关问题(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域。(2)复合函数单调性的判定:首先将原函数 分解为基本函数:内函数 与外函数 ;分别研究内、外函数在各自定义域内的单调性;根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。4分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的必要条件; 是奇函数 ; 是偶函数 ;奇函数 在原点有定义,则 ;在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6函数的单调性单调性的定义: 在区间 上是增函数 当 时有 ; 在区间 上是减函数 当 时有 ;单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;导数法(见导数部分);复合函数法(见2 (2);图像法。注:证明单调性主要用定义法和导数法。7函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期:函数周期的判定定义法(试值) 图像法 公式法(利用(2)中结论)与周期有关的结论8基本初等函数的图像与性质幂函数: ( ;指数函数: ;对数函数: ;正弦函数: ;余弦函数: ;(6)正切函数: ;一元二次函数: ;其它常用函数: 正比例函数: ;反比例函数: 9二次函数:解析式:一般式: ;顶点式: , 为顶点;零点式: 。二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数问题解决方法:数形结合;分类讨论。10函数图象: 图象作法 :描点法 (特别注意三角函数的五点作图)图象变换法导数法图象变换: 平移变换: “正左负右” “正上负下”; 伸缩变换: , ( 纵坐标不变,横坐标伸长为原来的 倍; , ( 横坐标不变,纵坐标伸长为原来的 倍; 对称变换: 翻转变换: 右不动,右向左翻( 在 左侧图象去掉); 上不动,下向上翻(| |在 下面无图象);11函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2ax, y)=0;曲线C1:f(x,y)=0,关于y=x+a(或y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);f(a+x)=f(bx) (xR) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(ax) (xR) y=f(x)图像关于直线x=a对称;函数y=f(xa)与y=f(bx)的图像关于直线x= 对称;12函数零点的求法:直接法(求 的根);图象法;二分法.13导数 导数定义:f(x)在点x0处的导数记作 ;常见函数的导数公式: ; ; ; ; ; ; ; 。导数的四则运算法则: (理科)复合函数的导数: 导数的应用: 利用导数求切线:注意:所给点是切点吗?所求的是“在”还是“过”该点的切线?利用导数判断函数单调性: 是增函数; 为减函数; 为常数; 利用导数求极值:求导数 ;求方程 的根;列表得极值。利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。14(理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论