




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除空间向量与立体几何单元测试题一、选择题1、若,是空间任意三个向量, ,下列关系式中,不成立的是( ) A. B. C D2、给出下列命题已知, 则;A、B、M、N为空间四点,若不构成空间的一个基底, 则A、B、M、N共面;已知,则与任何向量不构成空间的一个基底;已知是空间的一个基底,则基向量可以与向量构成空间另一个基底.正确命题个数是( )A1 B2 C3 D43、已知均为单位向量,它们的夹角为60,那么等于( )A B C D44、且,则向量的夹角为( )A30 B60 C120 D1505、已知且,则x的值是( )A3 B4 C5 D66、若直线l的方向向量为,平面的法向量为,则能使的是( )A BC D7.空间四边形中,则的值是( )A B C D8、正方体-的棱长为1,E是中点,则E到平面的距离是( )A B C D9若向量与的夹角为,则()461210如图,A1B1C1ABC是直三棱柱,BCA=90,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是( )A B CD11在三棱锥PABC中,ABBC,ABBCPA,点O、D分别是AC、PC的中点, OP底面ABC,则直线OD与平面ABC所成角的正弦值( ) A B C D12正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小( ) A B C D二、填空题13、已知关于面的对称点为,而关于轴的对称点为,则 14、ABC和DBC所在的平面互相垂直,且AB=BC=BD,CBA=DBC=60,则AD与平面BCD所成角为 .15、若直线l的方向向量为(4,2,m),平面a的法向量为(2,1,-1),且la,则m = .16、已知为正方形,为平面外一点,二面角为,则到的距离为 三、解答题 17、已知四棱锥P-ABCD的底面是边长为a的正方形,PA底面ABCD,E为PC上的点且CE:CP=1:4,求在线段AB上是否存在点F使EF/平面PAD?18、如图,已知点P在正方体ABCDA1B1C1D1的ABCDPxyzH对角线BD1上,PDA=60.(1)求DP与CC1所成角的大小;(2)求DP与平面AA1D1D所成角的大小.A1AC1B1BDC19、三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,平面,()证明:平面平面;()求二面角的平面角的余弦值20如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中. ()求的长; ()求点到平面的距离.参考答案选择题DCCCC DDBCA CA填空题13. 14. 30 15. -2 16. 解答题17、解:建立如图所示的空间直角坐标系,设PA=b, 则A(0,0,0),B(a,0,0),C(a,a,0),D(0,a,0),P(0,0,b), 则, E为PC上的点且CE:CP=1:3,由,设点F的坐标为(x,0,0,) (0xa),则,又平面PAD的一个法向量为,依题意,在线段AB上存在点F,满足条件,点F在线段AB的处.18 解:如图,以为原点,为单位长建立空间直角坐标系ABCDPxyzH则,连结,在平面中,延长交于设,由已知,由可得解得,所以()因为,所以即与所成的角为()平面的一个法向量是因为, 所以可得与平面所成的角为19. 解:解法一:()平面平面,在中,又,即A1AC1B1BDCFE(第19题,解法一)又,平面,平面,平面平面()如图,作交于点,连接,由已知得平面是在面内的射影由三垂线定理知,为二面角的平面角过作交于点,则,在中,在中,A1AC1B1BDCzyx(第19题,解法二)即二面角为解法二:()如图,建立空间直角坐标系,则,点坐标为,又,平面,又平面,平面平面()平面,取为平面的法向量,设平面的法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版融资居间服务合同样本
- 2025版石材铺装劳务合同范本专业、高效、环保成就石材工程新高度
- (2025年标准)债转股合同协议书
- 摊位加工坊转让合同范本
- 更改合同金额的补充协议
- 白班保姆合同协议书范本
- 相亲交往防被骗合同范本
- 2025年新企业拆除合同协议书
- 2025福建福州市文化艺术事业单位自主招聘19人笔试备考题库及答案解析
- 租房无沙发改造合同范本
- 2025年消除艾滋病、梅毒、乙肝母婴传播培训考试试题(含答案)
- 2025年部编版语文四年级上册全册单元、期中、期末测试题及答案(共10套)
- 患者期望与实际效果-洞察及研究
- 风力发电税务培训课件
- 2025年长沙市中考物理试卷真题(含答案)
- 检验科生化培训课件
- 数控安全培训课件
- 配电类“两种人”题库(2025年3月修编)改
- 假期返校安全教育
- 建设工程管理的毕业论文
- 中国工笔花鸟画技法课件
评论
0/150
提交评论