数学人教版八年级上册作业布置.doc_第1页
数学人教版八年级上册作业布置.doc_第2页
数学人教版八年级上册作业布置.doc_第3页
数学人教版八年级上册作业布置.doc_第4页
数学人教版八年级上册作业布置.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13.3等腰三角形第1课时【教学目标】知识与能力1、理解并掌握等腰三角形的性质。 2、会运用等腰三角形的概念和性质解决有关问题。 3、观察等腰三角形的对称性、发展形象思维。 过程与方法1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。 2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。情感态度与价值观1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。 2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。 3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。【教学重难点】重点:等腰三角形的概念和性质及其应用。难点:等腰三角形的性质的证明。【教学过程】一、 创设情境,引入新课 我们的世界,多姿多彩;我们的世界,五彩缤纷;我们的世界,其实也是丰富多彩、奇妙的几何世界。 下面,我们共同欣赏一组图片。PPT投影天安门、北京五塔寺、金字塔等五张图片,供学生观赏,并引导学生从中找出几何图形-等腰三角形,从而引入本课课题。这真是“世界很美好,几何更奇妙!”下面,我们就一起来一次说走就走的“几何之旅”。2、 探究新知1、探究1 如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的ABC 有什么特点?ABCD 让学生动手做一做,从剪出的图形中图形中观察ABC的特点,可以发现AB=AC,进而判断这样的三角形是等腰三角形。 引导学生回顾等腰三角形的有关概念:底边腰腰底角底角 有两条边相等的三角形叫做等腰三角形。等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。顶角练一练 (1)、等腰三角形一腰为3cm,底为4cm,则它的周长是 ; (2)、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是 ;(3)、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是 。2、探究2 仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗? 把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。重合的线段重合的角 从上表,可以发现等腰三角形具有什么性质吗? 引导学生先猜想“等腰三角形的两个底角相等”,再证明。 证明: 作ABC 的高线AD ADBADC 90 在ABD和ACD中 ABAC(已知) ADAD (公用) RtABDRtACD (HL) BC(全等三角形对应角相等)引导学生还可以用其他的方法进行证明: (1)、作ABC 的中线AD (2)、作顶角的平分线AD再用PPT展示等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。进而归纳:等腰三角形的性质性质 1 等腰三角形的两个底角相等。(简写成“等边对等角”)性质 2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合 。(简写成“三线合一”) 练一练填空: (1)如图,ABC 中, AB =AC,A =36, 则B = ; (2)如图,ABC 中, AB =AC, B =36, 则A = ; (3)、等腰三角形一个底角为75,它的另外两个角为_; 等腰三角形一个角为70,它的另外两个角为_; 等腰三角形一个角为110,它的另外两个角为 。3、 应用提高 例题:如图,在ABC中 ,AB=AC,点D在AC 上,且BD=BC=AD. 求ABC各内角的度数?分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180,就可求出ABC的三个内角 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC A=ABD(等边对等角) 设A=x,则 BDC=A+ABD=2x, 从而ABC=C=BDC=2x 于是在ABC中,有 A+ABC+C=x+2x+2x=180,解得x=36在ABC中,A=35,ABC=C=72下面,我们通过练习来巩固这节课所学的知识四、课堂练习ABDC1、 已知:如图,房屋的顶角BAC=100 , 过屋顶A的立柱AD垂直于BC ,屋椽AB=AC求B、C、BAD、CAD的度数。 2、如图,在ABC中,AB=AD=DC,BAD=26,求B和C的度数 五、拓展练习在 ABC中, AB=AC,AB的中垂线与AC所在的直线相交得的锐角为50,则底角的大小为_。分析:分两种情况:6、 小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高 结束语: 作为教师,我就要像等腰三角形一样,永远给两个底角同样的度数,不偏向任何一方。以后,我将一如既往,一视同仁,对每一个同学做到公平、公正!7、 作业设计教科书P81习题13.3第1、2、6题。八、板书设计:一、等腰三角形的概念二、等腰三角形性质:1等边对等角 2三线合一 九、教学反思:在这堂课的教学中,我的教学方法是采用“目标-问题”的教学法,力求体现“主体参与、自主探索、合作交流”的教学理念。课堂开始,用一组同学们很熟悉的图片引入课题,激发学生的兴趣,和我一起开始发现几何王国奥秘的“几何之旅”。课堂中,我让学生们动手折纸,从中发现等要三角形、并大胆猜想等腰三角形的性质,从而在我的引导下去证明、并能应用其解决实际问题。教学中,使用电子教学手段给学生直观展示等腰三角形的观念、性质,特别是对等腰三角形性质的形成、总结进行过程展示,效果很好。本节课由于教学设计中留给学生的时间和空间偏少,导致学生自主发现问题、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论