全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.2 二次函数的图象和性质(三)一、学习目标1、经历探索二次函数yax2k(a0)及ya(x+m)2 (a0)的图象作法和性质的过程。2、能够理解函数yax2k(a0)及ya(x+m)2 (a0)与yax2的图象的关系,了解a,m,k对二次函数图象的影响。3、能正确说出函数yax2k, ya(x+m)2的图象的开口方向,顶点坐标和对称轴。4通过比较抛物线 与 同 的相互关系,培养学生观察、分析、总结的能力;教学方法:探索研究法。教学过程:一、复习引入提问:1什么是二次函数?2我们已研究过了什么样的二次函数?3形如 的二次函数的开口方向,对称轴,顶点坐标各是什么?二、新课复习提问:用描点法画出函数 的图象,并根据图象指出:抛物线 的开口方向,对称轴与顶点坐标.例1 在同一平面直角坐标系画出函数 、 、 的图象.由图象思考下列问题:(1)抛物线 的开口方向,对称轴与顶点坐标是什么?(2)抛物线 的开口方向,对称轴与顶点坐标是什么?(3)抛物线 , 与 的开口方向,对称轴,顶点坐标有何异同?(4)抛物线 与 同有什么关系?继续回答:抛物线的形状相同具体是指什么?根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?这三条抛物线的位置有何不同?它们之间可有什么关系?抛物线 是由抛物线 沿y轴怎样移动了几个单位得到的?抛物线 呢?你认为是什么决定了会这样平移?例2在同一平面直角坐标系内画出 与 的图象三、本节小结本节课教学了二次函数 与 的图象的画法,主要内容如下。填写下表: 表一:抛物线开口方向对称轴顶点坐标 表二:抛物线开口方向对称轴顶点坐标 四、课堂练习:1画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的2.对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最 值,最 值y= 3.函数yx23是由yx2向_平移_单位得到的。4.函数yx21是由yx22向_平移_单位得到的。5.函数yx24是由yx25向_平移_单位得到的。6.函数y(x3)2是由yx2向_平移_单位得到的。7.(1)二次函数y=2(x+5)2的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 .(2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x2向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y有最 值,是 (3)将二次函数y=2x2的图像向右平移3个单位后得到函数 的图像,其对称轴是 ,顶点是 ,当x 时,y随x的增大而增大;当x 时,y随x的增大而减小。8.已知抛物线yx2上有一点A,A的横坐标为1,过A点作ABx轴,交抛物线于另一点B,求AOB的面积。9.(a、h是常数,a0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标10.不画出图象,你能说明抛物线与之间的关系吗yxBOAC11.如图,抛物线与轴交于两点,与轴交于点(1)求三点的坐标;(2)证明为直角三角形;(3)在抛物线上除点外,是否还存在另外一个点,使是直角三角形,若存在,请求出点的坐标,若不存在,请说明理由三、思维拓展:12.阅读材料,解答问题当抛物线的表达式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标将发生变化例如y=x22mxm22m1,有y=(xm)22m1,抛物线的顶点坐标为(m,2m1),即当m的值变化时,x、y的值也随之变化,因而y值也随x值的变化而变化把代入,得y=2x1可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足表达式y=2x1解答问题:(1)在上述过程中,由到所用的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论文的写作流程
- 经济学本科毕业论文题目与选题
- 工程监理合同是公开招标(3篇)
- 试论潮汕方言词语与古代汉语的历史渊源关系
- 工程合同相关案例分析题(3篇)
- 略论郑观应的商战思想
- 备案表填写说明【模板】
- 人教社2019版高中英语教材语篇分析-以必修一阅读板块为例
- 灌注桩钢筋笼浮笼原因分析及处理方案
- 品牌LOGO设计提案
- 康复科考试试题及答案
- 国际商务谈判备忘录范本
- 2024桶装水采购配送合同范本
- 塑料储水桶水箱安全操作规程
- 大学生劳动就业法律问题解读知到智慧树章节测试课后答案2024年秋华东理工大学
- JTG H30-2015 公路养护安全作业规程
- 四川省内江市2025届高三上学期语文一模考试试卷
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 北京市房山区2024届高三下学期一模试题 英语 含答案
- 《第8课 梦游天姥吟留别》教案 统编版高中语文必修上册
- 健康管理中心运营与服务流程规范
评论
0/150
提交评论