




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 1 页 共 13 页 市区绿地喷灌喷头的最佳布局 数学学院 数学与应用数学 师范 专业 2011 级 刘佳 指导教师 张新功 摘摘 要要 随着市区绿化面积的增多 传统的浇灌方式已被新的喷头喷灌方式所取代 要 想真正实现喷头的节水量大 浇灌面积广等优点 那么喷灌喷头的布局则成为一个亟待解决 的问题 本文根据实际情况的调查做了合理的假设 建立了一般模型 该模型主要研究了喷 头按正三角形和正方形排列的情形 通过用 matlab 绘制出了喷头喷灌面积的均匀系数变化 图和重叠系数变化曲线 经比较 提出了喷头在不同情形下的合理布局 关键词关键词 绿化面积 喷灌强度 合理布局 均匀系数 重叠系数 Abstract With the increasing number of the green land area in the urban the traditional means of irrigation is substituted for the new one However if we want to make the advantages such as huge amount of irrigation wide irrigation area and so on come true the layout of shower nozzle becomes a problem which must be solved in time In the modeling I consult some relevant materials and make some reasonable assumptions on the basis of recent survey Then I make the model The model is mainly to study the layout of shower nozzle in the way of right triangle and right rectangle With the mathematical software I draw the diagram of even coefficient and diagram of curves of the shower nozzle After the comparison I pose the reasonable layout of shower nozzle in different cases Key words the green land area spray and irrigation the reasonable layout even coefficient mathematical software 随着城市的改造和扩建 市区内的主要街道和公园内的绿化面积也越来越大 传统的人工浇灌的方式已远远不能满足绿化的要求 因此针对于灌溉问题许多 文献都进行了讨论 1 10 喷灌作为一种新的灌溉方式 省时省力 节水量大 浇灌面积广等诸多优点 使得这种新技术得到广泛的应用 4 6 8 针对农业生 产中的喷灌 基于文献 1 3 7 研究了喷头的排布问题 根据分析和计算 得到 如下结论 当喷头采用正方形排布 且喷头间距是喷水半径 即射程 的 1 06279 第 2 页 共 13 页 倍时有最均匀的喷灌效果 喷灌均匀系数为 0 9825123 本模型具有较好的实用价 值 但与此同时 喷灌设备工程投资较高 喷灌材料的市场价格昂贵等并没有使 得喷灌技术得到普及 这就要求我们对这种新技术的使用给予足够的思考 如何 合理布局喷灌系统的重要组成成分 喷头 才能真正发挥喷灌喷头的最佳效果 文献 2 4 5 6 通过数学模型的建立进行论证 怎样的布局才能使成本最小化 利益最大化 1问题分析 1 1 问题重述 随着市区的绿化面积的逐渐增多 传统的人工浇灌方式也应被新的喷灌方式 所取代 喷灌的诸多优点 节水量大 浇灌面积广 土地的利用率得到有效提高等 等使之成为近年来备受关注的一种浇灌方式 因此 喷灌不仅仅在农田 苗圃里 有着广泛的应用 而且在城市的绿地浇灌中也有着很好的前景 虽然喷灌好处众 多 但是喷灌设备工程投资较高 喷灌材料的价格昂贵 并没有使喷灌的技术得 到普及 所以喷灌系统的重要组成部分 喷头的正确使用与否 直接影响到喷灌 的效果 如果喷头布置过密 则投资增加且浪费水资源 而过稀则会有喷洒不到 的地方 使得水量分布不均而影响植物的生长 下面就喷头的作用原理进行了分 析 在合理假设的前提下 通过对喷洒水量在灌溉面积上分布的均匀程度和覆盖 程度与喷头之间的距离的研究来决定喷头的合理布局 1 2 问题假设 在喷灌过程中 忽略风等自然因素的影响 即不考虑喷头喷出的水雾受风 1 的吹动而发生偏离 从而影响喷洒水量的分布情况 假设喷灌的绿地的土地边长远大于喷头的喷洒半径 2 将每个喷头看作是一个支点 3 假设绿地非常平坦 忽略喷洒到地面的水因地势的不平而发生流动 4 1 3 符号说明 两喷头间的水平距离 s 第 3 页 共 13 页 喷头的喷射半径 r 地面上的一点到某个喷头支架底部的水平距离 l x y 表示喷灌均匀系数 即喷水量在灌溉面积上的均匀分布程度其计算公 st 式为 1 t s p p 1 1 单位时间内喷洒到该点处的水的深度 即喷灌强度 其计算公式 p x y 为 0 p x y 0 p1 l r lr 1 2 因为为系数 若将 看成 1 个单位 则公式 1 2 简化为 0 pr 1p x yl 1 3 单位时间内喷洒的水量之和 即总喷灌量 sum p 平均喷灌强度 即总喷灌量除以喷灌的地表面积 p 地面上的各点喷灌强度与平均喷灌强度的差的平均值 即喷灌强度的 p 平均偏差 喷灌重叠系数 表示单位面积内平均需要的喷头个数 sm 1 4 问题分析 考虑喷头的最佳布局时 除去喷头的工作压力 风 地势等人为不易控制 的因素外 最重要的一个决定因素就是喷头的排布要均匀 而减少喷头的喷灌 的重叠区域 可减少喷头个数 从而节约成本 现考虑绿地喷灌使用的是固定 旋转式喷灌系统 显然 将喷头看作质点后 均匀分布意味着用线段将就近连 接得到的图形是一些正多边形 而这些正多边形完全覆盖了整个田地 每个喷 头喷出的水洒落在以喷头为圆心的圆形区域上 任何一个喷头周围都可以划分 第 4 页 共 13 页 为几个正多边形的内角 对于边数大于等于 3 的正多边形 其每个内角为 所以 2必须是的整数倍 即必须是整数 所以 2n n 2n n 2 2 n n 3 4 6 所以喷头的布局构成的正多边形只有正三角形 正方形 正六边形 n 即我们只需考虑在这些图形的顶点处安置喷头 从而使得喷洒最均匀 2与模型的建立及求解 2 1 模型的建立和求解 2 1 1 正三角形的布局研究 在图 2 1 a 中 三角形的顶点即为喷头的布置地点 图中 1 此时地面s 上所有的点都被重复喷灌 显然不符合实际需要中的减少喷头个数的目的 所以 1 另一方面 如图 2 1所示 为了植物生长需要但又不能出现灌溉不到s b c 的地方 所以 于是 的取值范围应满足 1 见图 2 1 中的图形 s3ss3 d 即为正三角形布局中所研究的对象 a1s bs3 C A A 第 5 页 共 13 页 D O B 1 c3 S ds3 图 2 1 喷头距离与喷灌射程的关系s 为了研究图 2 1中的重叠部分 需引进喷灌重叠系数 它表示单位 d sm 面积内土地平均需要的喷头个数 其值等于喷头在一个正多边形中的喷洒面积的 总和除以单个喷头的最大喷洒面积 再除以正多边形的面积 当喷头位于正三角形的三个顶点上时 由上述图 2 1可得喷头按三角形排 d 列的重叠系数为 仔细观察 图 2 1具有完全的对称性 所以我们 sm 2 3 32 s d 只需研究图中的阴影部分的平均喷灌强度 即可得整个正三角形的平均OABRt 喷灌强度 为此 将阴影部分单独拿出来放在直角坐标系中考虑 如图 2 2 所示 A 3 E 1 E 2 E O B 图 2 2 1 时平均喷灌强度分析图s3 在上图中被两端圆弧分割成了 三个小区域 其中区域OABRt 1 E 2 E 3 E 只受到喷头的喷灌 由公式 1 3 可知 在该区域上的点处 其喷灌 1 EO x y 强度为 1 p 22 11x ylxy 对于区域上的点 其同时受到喷头和的喷洒 所以其上每一点的喷灌 2 EOD 第 6 页 共 13 页 强度为喷头的作用强度再加上喷头作用强度 即 上每一点的喷灌强度为OD 2 E 2 222 2 2px yxysxy 区域上的点同时受到喷头 的喷洒 其上的喷灌强度等于这 3 EOCD 三个喷头各自作用产生的喷灌强度之和 即 2 2 2 222 3 3 3 22 ss px yxysxyxy 喷灌强度反映了每个点处获得水量的大小 所以将 1 px y 2 px y 分别在相应区域作二重积分并相加 就可得上的总水量 3 px yOABRt 1 3 1 ii i E px y d 仔细观察图 2 1后发现 图形具有完全的对称性 在一个正三角形区域上的 d 喷灌量 即图 2 1中圆心角为的三个相同扇形区域上喷水量的总和 刚好和 d 0 60 一个喷头在半个圆域上喷出的水量相等 而从图中可知的面积刚好是正OABRt 三角形面积的 则的总水量为 6 1 OABRt sum p 2222 22 1 11 11 1 121236 xyxy px y dxdyxydxdy 2 1 用总喷灌水量除以的面积 可得上的平均喷灌水量 sum pOABRt OABRt 即平均喷灌强度为 22 242 333 sum pp ss 2 2 下求上的喷灌强度的平均偏差 即地面上每点处的喷灌强度偏离OABRt p 的平均值 记地面上每点的喷灌强度与平均值的偏差为p p x yp 所以上所有点偏离之和为二重积分 即OABRt 第 7 页 共 13 页 3 1 i sumii i E ppx yp d 再除以的面积就可得平均偏离强度 OABRt 3 2 1 24 3 i ii i E ppx yp d s 2 3 将 2 2 和 2 3 代入 1 1 中就可得喷灌均匀系数为 3 1 36 11 i ii i E p t spx ypd p 2 4 再利用 matlab 进行数值计算 画出在 1 之间的变化曲线如图 2 3 sts 3 所示 0 98 0 97 0 96 0 95 0 94 0 93 1 1 1 2 1 3 1 4 1 5 1 6 图 2 3 正三角形分布时均匀系数的变化图t s 从图 2 3 中可以看出 当间距 1 3 时 均匀系数随 的增大而减小 而当间距 处于 1 2 和 1 3 之间时 sss 喷灌均匀系数取得一个极大值 由数值计算可得当间距 1 24 时取得极大值s 95 8 综上 当间距 1 24 即喷头间距为其射程的 1 24 倍时 不仅可t ss 第 8 页 共 13 页 以减少喷头个数 而且可以提高均匀系数 2 1 2 正方形的布局研究 对于正方形区域 当 1 时 一个喷头的喷灌区域完全覆盖了相邻的喷头 s 这种情形显然不符合实际需求 所以1 但同时为保证没有灌溉不到的区域 s 所以 因为 时正方形区域中心将有灌溉不到的地方 所以 的范s 2s2s 围应为 1 正方形中的喷灌模型如图 2 4 所示 将图 2 4 中的 s 2aa 单独取出来放在直角坐标系中得到图 2 4 OABRt b C D A O B a A 4 E 3 E 1 E 2 E O B 第 9 页 共 13 页 b 图 2 4 正方形区域 1时的平均喷灌强度分析图 s 2 与正三角形的分析情况类似 喷头按正方形布局时 易得喷头的重叠系数为 sm 2 1 s 在图 2 4 中 一个喷头喷出的所有水量正好等于整个正方形区域中的喷b 灌水量 而占了整个正方形的 所以有OAB 1 8 sum p 22 22 1111 22 1 1111 11 1 883 xx xx px y dydxxydydx 2 5 将 2 5 除以的面积就可得上的平均喷灌强度为OABRt OABRt 2 8 3 p s 2 6 于是有 4 22 1 88 3 i ii i E ppx yd ss 2 7 其中被分成四部分 如图 2 4所示 与正三角形情况类似OABRt 1 E 2 E 3 E 4 E b 地讨论可得 22 1 1px yxy 2 222 2 2px yxysxy 22 2222 3 3px yxysxyxys 2222 2222 4 4 px yxysxyxyssxys 将 2 6 2 7 代入 1 1 可得均匀系数的表达式 2 8 4 2 1 38 11 3 i ii i E p t spx yd sp 由于上式是一个含未知参数 的特别复杂的函数 较难直接用微积分的知识s 直接求解相关性质 所以采用数学软件包进行数值计算 利用 matlab 可以画出 1 第 10 页 共 13 页 时的大致图形如图 2 5 所示 s 2t s 0 95 0 9 0 85 1 1 1 2 1 3 1 4 图 2 5 正方形分布时均匀系数的变化图t s 由图可知 当1 062 时 均匀系数随 的增大而增大 当1 062 时 均s ss 匀系数随 的增大而减小 当 1 062 时取得极值 该极值为 98 2 此时sst s 的重叠系数 0 887 sm 2 1 3 正六边形的布局研究 正六边形的排布情况几乎可以完全排除掉 因为当喷头间距大于射程即喷头 间距大于 1 时 正六边形的中间会出现灌溉不到的区域 如图 2 6所示 a 第 11 页 共 13 页 a b 图 2 6 正六边形分布时喷头距离与喷灌射程的关系s 所以喷头间距不应超过喷头的射程 然而 按照间距小于等于射程来布局的 话 即 1 除需要较多的喷头外 还会出现重叠区域过多的现象 仅阴影部分s 就被喷洒了六遍 此时 只需在正六边形中心处增加一只喷头 即转化成正三角 形的情况 在讨论了三类分布的喷头设置后 可以总结如下 当按正三角形排布时 在 1 24 时可求得均匀系数的一个极大值 95 8 但它只是区间 1 上的st s3 唯一的一个极大值 但并不是最大值 最大值在区间的左端点 1 处取得 从理s 论上看 当喷灌排布的间距等于射程时 水量分布最均匀 但在实际生活中这种 方案是不可取的 因为当按这种方案排布时 整个三角形区域就被喷洒了三遍 虽说喷洒足够均匀了 但比单个喷头在间距大于 1 的正三角形的喷灌面积小 而 且重叠系数太高 并没有达到减少喷头的目的 所以 当按正三角形排布时 间 第 12 页 共 13 页 距 取 1 24 最好 此时喷头间距为喷头射程的的 1 24 倍 均匀系数为 95 8 重s 叠系数 单位面积需要的喷头个数 为 0 75 当按正方形排布时 喷灌均匀系数在区间 1 上只能取得一个极大值 2 它也是该区间上的最大值 此时 取 1 06 时均匀程度最好 喷灌均匀系数达到s 了 98 2 重叠系数为 0 887 t s sm 从 按正三角形的布局研究 的那一部分知识中 用 matlab 绘出均匀系数随重 叠系数的变化曲线图 见图 2 7 正三角形的均匀系数 0 95 0 9 正方形的均匀系数 0 85 0 78 0 5 0 6 0 7 0 8 0 9 图 2 7 均匀系数随重叠系数变化的曲线 当重叠系数超过 0 6 时 均匀系数变化平缓 仅在 0 9 与 0 96 之间浮动 所 以为了尽量减少喷头的个数 考虑重叠系数为 0 61 以大大减少喷头个数 sm 此时 均匀系数为 98 2 喷头间距为 s 1 38 而在重叠系数为 0 785 时 按t s 正三角形和正方形排布有相同的均匀系数 当均匀系数大于 0 785 时 按正方形 排列的均匀系数显然大于按正三角形排列的均匀系数 此时 令喷头间距为喷头 射程的 1 06 倍 均匀系数就可取得最大值 当重叠系数小于 0 785 时 即实际喷头 不多时 按三角形排列比按正方形排列更合适 令其间距为射程的 1 24 倍到 1 38 倍之间时 均匀程度就达到 90 以上 第 13 页 共 13 页 3 结束语 喷灌问题实质上是一个多目标规划问题 本文并未沿着常见的规划问题的思 路去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省揭阳市空港经济区2026届九上化学期中综合测试试题含解析
- 山东省日照市东港区新营中学2024-2025学年部编版七年级下学期历史期中考试题(含答案)
- 2026届四川省自贡市曙光中学化学九年级第一学期期末达标检测试题含解析
- 2026届广东省茂名市直属学校英语九上期末联考模拟试题含解析
- 2026届福建省厦门市四校化学九年级第一学期期中质量检测试题含解析
- 旅游景区物业经营权及旅游服务合作协议
- 离婚协议书中个人债务分担协议书范本
- 专科康复治疗学考试题及答案
- 珠宝拍卖代理合同及拍卖规则及流程清单
- 专技十三级考试题目及答案
- 2023年药师技能竞赛
- 矿井通风工题库汇总
- TSZUAVIA 009.5-2019 多旋翼无人机系统实验室环境试验方法 第5部分:高温试验
- GB/T 23445-2009聚合物水泥防水涂料
- GB 10343-2008食用酒精
- 新员工入职安全培训ppt
- 房产证模板表格
- 小粒咖啡栽培技术措施课件
- 曲顶柱体的体积市公开课金奖市赛课一等奖课件
- 2022年东台市城市建设投资发展集团有限公司招聘笔试题库及答案解析
- 民法典侵权责任编课件
评论
0/150
提交评论