




已阅读5页,还剩50页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,Chapter 7 Stability in the Frequency Domain,7.1 Introduction7.2 Mapping Contours in the s-plane7.3 Nyquist Stability Criterion7.4 Stability Margin of System 7.5 Dynamics performance of closed-loop from open-loop frequency characteristic7.6 Summary,2,7.1 Introduction,Developed by H.Nyquist in 1932.Based on Cauchys theorem.,3,The frequency response can be obtained experimentally.It can be utilized to investigate the relative stability.,4,Where L(s) is a rational function of s.To ensure stability, it must be ascertained that all zeros of F(s) lie in the left-hand s-plane.Propose a mapping of the right-hand s-plane in F(s)-plane.,5,7.2 Mapping Contours in the s-plane,A contour map is a contour in one plane mapped into another plane by a relation F(s).Example:,6,Cauchys theorem: If a contour s in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles and zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-P times in the clockwise direction.,7,Another example:,8,The poles of F(s) are the poles of L(s).The zeros of F(s) are the characteristic roots of the system.,7.3 Nyquist Stability Criterion,9,For a system to be stable, all the zeros of F(s) must lie in the left-hand s-plane.Choose a contour s in the s-plane that encloses the entire right-hand s-plane, the number of encirclements of the origin of the F(s)-plane is N=Z-P.Z: zeros in RHPP: poles in RHPSo the number of unstable poles of the system is Z=N+P,10,The contour F is known as the Nyquist diagram or ploar plot of F(s).As L(s)=F(s)-1, the number of encirclements of the origin in F(s)-plane becomes the number of encirclements of -1 point in L(s)-plane.L(s) is the open-loop transfer function.,11,Nyquist stability criterion1. A feedback system is stable if and only if the contour L in the L(s)-plane does net encircle the (-1, 0) point when the number of poles of L(s) in the right-hand s-plane is zero (P=0).2. A feedback system is stable if and only if, for the contour L, the number of counter-clockwise encirclements of the (-1, 0) point is equal to the number of poles of L(s) with positive real parts.,12,Example 7.1,N=Z=0, so the system is stable.,13,Example 7.2 Assuming open loop transfer function is,determine the stability of the system at K=20 and K=100.,14,We need to find the cross-over point and compare it with -1!,15,So the system is stable at K=20 and unstable at K=100.,16,1,20,0.3,K=20,17,K=20,18,100,K=100,19,1,1.48,K=100,20,K=100,21,Example 7.3,22,(a) The origin of the s-plane,23,is the polar plot of L(s).,is mapped into the origin of the L(s)-plane.,is symmetrical to the polar plot.,24,Note: 1.,25,2.,26,3. The conclusion can be expanded to the system including delay unit. 4. If the contour L(jw) overpass the (-1, j0) point, that is one close-loop pole on the jw-axis, the system is critically stable.,27,5. System with v poles at the origin The supplement curve must be draw. The small semicircular detour around the pole at the origin can be represented by setting,28,6. If the number of counter-clockwise encirclements is NP, then the closed-loop system is unstable with Z unstable poles, where Z=P-N.,29,正负穿越,正穿越:相角增加负穿越:相角减少极坐标图穿越点(-1,0)左边实轴的正负穿越次数之差等于极坐标图逆时针方向包围点(-1,0)的周数。Nyquist判据:极坐标图穿越点(-1,0)左边实轴的正负穿越次数之差应等于P/2。P:开环传递函数正实部极点数。,30,Example 7.4,It is possible to encircle the -1 point.,31,At real axis,So the system is stable when,32,Example 7.5,33,So the system is stable when Tt.,34,Example 7.6 non-minimum phase system,35,Conclusion: Nyquist diagram encircles the 1 point one time in the direction of counter-clockwise. N=1,P=1,Z=P-N=0, so the system is stable. The system is stable when K3.,36,Example 7.7:The open-loop TF is Determine the changing range of K.,The 1 point located on A or C, the system is stable. The 1 point located on B or D, the system is unstable.,37,We can get: 1 locus on A, K13200, unstableSo the changing range of K is 0 K19.2 and 334K0(PM1(0 dB) indicates a stable closed-loop system and the system will remain stable if the loop gain increase is less than GM. GM1(0 dB) indicates an unstable closed-loop system and a reduction of loop gain at least GM is required for the system to become stable.,42,0,phase margin,Gain margin,Kg,43,Gain and Phase Margins on Bode plots.,44,7.5 Dynamics performance of closed-loop from open-loop frequency characteristic,1. System type and steady state error,45,System type Slope of the low frequency asymptote type 0 0. type 1 -20dB/dec. type 2 -40dB/dec.,46,2. The specification of closed loop system in frequency domain,Constant M circles,47,3. The second-order control system,48,49,The peak value of magnitude of control system,50,Bandwidth of control system,51,The specification of open loop system in frequency domain,Gain crossover frequency,52,Phase margin,53,4. The specification of high order system,54,7.6 Summary,In the frequency domain, Nyquists criterion can be used to determine the stability of a feedback control system. Nyquists criterion provides two relative stability measures: gain margin and phase margin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧养老社区心理健康资源库创新创业项目商业计划书
- 购买建房土地合同(标准版)
- 果树苗木基地创新创业项目商业计划书
- 2025版长期租赁合同样本
- 奶牛节水养殖技术创新创业项目商业计划书
- 2025授权合同样本:软件许可使用合同
- 无公害蔬菜物流配送创新创业项目商业计划书
- 建屋合同(标准版)
- 南京安全员培训及答案
- 2025合同设备修理合同范本
- 高校实验室安全基础课(实验室准入教育)学习通网课章节测试答案
- 2025年山东省安全员C证(专职安全员)考试题库
- GB/T 3871.9-2006农业拖拉机试验规程第9部分:牵引功率试验
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB 17840-1999防弹玻璃
- 文学鉴赏-课件
- 小军师面试万能绝杀模板-组织管理
- midasCivil斜拉桥分析课件
- 应急响应程序流程图
- 牡蛎在肾病科的应用总结
- 腧穴定位法课件
评论
0/150
提交评论