一分析的化身──欧拉.docx_第1页
一分析的化身──欧拉.docx_第2页
一分析的化身──欧拉.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欧拉简介欧拉(l.euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(basel),卒于彼得堡(petepbypt)。父亲保罗.欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰.伯努利(johann bernoulli,1667.8.6-1748.1.1)及雅各布.伯努利(jacob bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(nicolaus bernoulli,1695-1726)及丹尼尔(daniel bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了论桅杆配置的船舶问题而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(virgil)的史诗aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰.伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(j.l.lagrange,1736.1.25-1813.4.10)。欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视名流的非议,热心于数学的普及工作。他编写的无穷小分析引论、微分法和积分法产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(c.f.gauss,1777.4.30-1855.2.23)、牛顿(i.newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用、表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:又把三角函数与指数函联结起来。在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。 欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:欧拉是我们的导师 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远值得我们学习欧拉的一些成就三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线,且外心到重心的距离等于垂心到重心距离的一半。莱昂哈德欧拉于1765年在他的著作三角形的几何学中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。如右图,欧拉线(图中的红线)是指过三角形的垂心(蓝)、外心(绿)、重心(黄)和欧拉圆圆心(红点)的一条直线。通过问题了解欧拉1)欧拉在世界数学史上地位如何?答:如果要列举有史以来三位最伟大的数学家,他们就是阿基米德、牛顿、欧拉。2)欧拉为什么被誉为“数学英雄”?答:欧拉26岁,右眼失明,64岁双目完全失明,但他身残志坚,即使双目在失明后的12年里,孜孜不倦地研究精神也一直保持到生命最后一刻。3)为什么说欧拉是分析的化身?答:欧拉为分析的发展做出了卓越的贡献。4)为什么说欧拉是世界上最多产的数学家?答:欧拉生前共发表了560多篇(部)著作与沦文,身后还留下大量遗稿。欧拉曾说,他发表的论文足够圣彼得堡科学院用上20年,结果直到他去世80年后,圣彼得堡科学院还在刊登他的遗作,特别说明的是,欧拉还有许多手稿在一场大火中不幸化为灰烬。5) 欧拉的成就中,有没有于我们高中生数学有关的呢? 答:有。比如 :我们常见的符号:用f(x)表示函数;用e表示自然对数;用表示求和;用 i表示虚数单位所以虚数单位同样可以表示为:表示函数符号;sin,cos,tan,等都是欧拉引进并使用的。6) 为什么说数学领域,18世纪是欧拉的世纪? 答:因为欧拉的研究范围涵盖了当时的大量学科,比如数沦,代数,无穷级数,微分方程,变分法,微分几何,图伦,拓扑学,并运用这些数学工具去解决天文,物理学等方面的实际问题,取得巨大的成果。7)谈谈欧拉严谨的科学态度:答:欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来欧拉在失明的17年中,还解决了使牛顿头痛的月离问题和很多复杂的分析问题8 欧拉具有的锲而不舍的精神答:沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A欧拉(数学家和物理学家)笔录64岁他双目完全失明,这一年,圣彼得堡发生的一场大火,将欧拉的藏书及大量研究成果都化为灰烬,几年后,夫人辞世。接二连三的打击,并没有使他丧失意志完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:我死了,欧拉终于停止了生命和计算数学巨星欧拉的教学反思1整个教学过程达到预先设计的目的,引起了学生对欧拉强烈的共鸣,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论