


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3 不等式的解集学习目标:能够根据具体情境中的大小关系了解不等式的意义能够在数轴上表示不等式学习过程第一环节:复习旧知识1.什么叫不等式?什么叫方程?什么叫方程的解?2.用不等式表示:(1)x的3倍大于1; (2)y与5的差大于零;(3)x与3的和小于6; (4)x的小于2.3.当x取下列数值时,不等式x+36是否成立?-4,3.5,-2.5,3,0,2.9.第二环节:创设情境,导入新课在某次数学竞赛中,教师对优秀学生给予奖励,花了30元买了3个笔记本和若干支笔,已知笔记本每本4元,笔每支2元,问最多能买多少支笔?第三环节:师生互动,课堂探究(一)提出问题,引发讨论探索交流:1、若某人要完成一件工作,要求他完成这项任务的时间不得少于4小时,你知道他允许用的时间有多长吗?2、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s,人离开的速度为4 m/s,那么导火线的长度应为多少cm?(二)想一想:(1)x=4、5、6、7.2能使不等式成立吗?(2)你还能找出一些使不等式x5成立的x的值吗?(三)导入知识,解释疑难:通过以上问题情境的引入可知:所列出的不等式中都含有未知数,而符合条件的未知数的值很多,只要将其中任一个未知数的值代入原不等式中,均能使不等式成立,把“能使不等式成立的未知数的值,叫做不等式的解。”不等式的解有时有无数个,有时有有限个,有时无解。一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解。(四)议一议:请同学们用自己的方式将不等式X5的解集和不等式X-5-1的解集分别表示在数轴上,并与同伴进行交流注意:将不等式的解集表示在数轴上时,要注意:1)指示线的方向,“”向右,“”向左.2)有“=”用实心点,没有“=”用空心圈. 三、应用举例,变式练习例1 在数轴上表示下列不等式的解集:(1)x-5; (2)x0; (3)x-1;(4)1X4; (5)-2X3; (6)-2x3.例2 用不等式表示下列数量关系,再用数轴表示出来:(1)x小于-1; (2)x不小于-1;(3)a是正数; (4)b是非负数.练习:用简明语言叙述下列不等式表示什么数:x0;x0;x-1;x-1.四、师生共同小结针对本节课所学内容,请学生回答以下问题:1.如何区别不等式的解,不等式的解集及解不等式这几个概念?2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.3.记号“”、“”各表示什么含义?4.在数轴上表示不等式解集时应注意什么当堂检测:1不等式中,解集不包括的是 ( )Ax- Cxx+1成立的值中,最小的整数是( )A0 B1 C2 D33给出四个命题:若ab,c=d, 则acbd ;若acbc,则ab;若ab,则ac2bc2;若ac2bc2,则ab。正确的有 ( ) A1个 B2个 C3个 D4个4图中表示的是不等式的解集,其中错误的是 ( ) 20 Ax2 Bx11010 Cx0 Dx05如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是 ( )1-1/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级茶艺师试题库(含答案)
- 2025年物流园区发展模式与创新案例研究报告
- 2025年绿色金融可持续发展目标(SDGs)实践与绿色基金管理报告
- 2025年特色小镇产业培育社会稳定风险评估与区域发展报告
- 2025年教育游戏化在家庭教育中的应用与教学设计指南
- 2025年城市黑臭水体治理实施方案中的水环境治理与城市雨水收集利用报告
- 威海鑫山冶金有限公司校园招聘模拟试题附带答案详解完整
- 推拿治疗学练习题及答案详解(考点梳理)
- 护士企业编制面试题库含完整答案详解(历年真题)
- 2025低价股份转让协议及后续股权权益保障合同
- 2025年工业区污水处理厂可行性研究报告
- 2024年婴幼儿托育服务与管理专业人才培养方案调研报告
- 特色农产品电商直播基地建设项目可行性研究报告
- 2024-2025学年人教版数学八年级下册期末复习卷(含解析)
- 地震破拆技术课件
- 致密油藏中CO2驱油机理研究
- 2025年高校教师岗前培训高等教育心理学知识竞赛考试题库50题及答案
- 电动港机装卸机械司机(高级技师)职业技能鉴定理论考试题(附答案)
- 无人机打药合同协议书
- 《肥胖症诊疗指南(2024年版)》解读课件
- 乡村振兴文化旅游发展规划
评论
0/150
提交评论