已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题三 导数的解题技巧第_课时 共_4_课【考点聚焦】1了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念2熟记基本导数公式;掌握两个函数和、差、积、商的求导法则了解复合函数的求导法则,会求某些简单函数的导数3理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值【命题趋向】导数命题趋势:综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点:(1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题.(2)求极值, 函数单调性,应用题,与三角函数或向量结合.分值在12-17分之间,一般为1个选择题或1个填空题,1个解答题.【重点难点热点】考点1:导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 【问题1】(2007年北京卷)是的导函数,则的值是考查目的 本题主要考查函数的导数和计算等基础知识和能力.解答过程 故填3.演练例2. ( 2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是 ( ) A.(-,1) B.(0,1) C.(1,+) D. 1,+)考查目的本题主要考查函数的导数和集合等基础知识的应用能力.解答过程由综上可得MP时, 例1 在处可导,则 思路: 在处可导,必连续 例2已知f(x)在x=a处可导,且f(a)=b,求下列极限:(1); (2)分析:在导数定义中,增量x的形式是多种多样,但不论x选择哪种形式,y也必须选择相对应的形式。利用函数f(x)在处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。解:(1)(2)说明:只有深刻理解概念的本质,才能灵活应用概念解题。解决这类问题的关键是等价变形,使极限式转化为导数定义的结构形式。例3观察,是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。解:若为偶函数 令 可导的偶函数的导函数是奇函数 另证: 可导的偶函数的导函数是奇函数考点一:考小题,重在基础.有关函数与导数的小题,其考查的重点在于基础知识,如:导数的定义、导数的几何意义、函数解析式、图像、定义域、值域、性质等仍是高考的重点.例1(福建11)如果函数y=f(x)的图象如图1,那么导函数的图象可能是( )图1解析:利用函数与导数的关系:函数递增则导数大于0,函数递减则导数小于0,从图1可以看出,函数先递增再递减又递增再递减,故导函数的图像应该是先大于0再小于0又大于0再小于0,符合条件的只有A答案,故选A评注:利用函数的图像求导函数的图像,应注意函数的单调性与导函数的正、负的关系。例2(湖北卷7)若上是减函数,则的取值范围是( )A. B. C. D. 解析:由条件,函数上是减函数,则,即,对任意的恒成立,对任意的恒成立,而上的最小值为-1,故,选C2BCAyx1O4561234例3(北京卷12)如图,函数的图象是折线段,其中的坐标分别为,则 ; (用数字作答)解析:由图易知=2;,由导数的定义知-2评注:用定义解题必须准确把握导数的定义,另外还注意是先求还是将x=1代入。例4(江苏卷8)直线是曲线的一条切线,则实数b 解析:由导数的几何意义,切点为,把切点代入切线方程得评注:用导数的几何意义求切线方程一直是高考的热点,但难度不是很大。考点二:利用导数求函数的单调性例5(全国一19)已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围解析:(1)求导:当时,在上递增当,求得两根为即在上递增,在上递减,再上递增(2)由(1)得,且解得:评注:利用导数处理函数的单调性,简洁明快,但要注意导数与可导函数单调性的关系,是为增函数的充分不必要条件;是为增函数的必要不充分条件。考点三:利用导数求函数的极值例6(陕西卷21)已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是()求函数的另一个极值点;()求函数的极大值和极小值,并求时的取值范围解析:(),由题意知,即得,(*),由得,由韦达定理知另一个极值点为(或)()由(*)式得,即当时,;当时,(i)当时,在和内是减函数,在内是增函数,由及,解得(ii)当时,在和内是增函数,在内是减函数,恒成立综上可知,所求的取值范围为评注:利用导数求函数的极值,先求,再令求得根,然后检验极值点左右的符号,左正右负为极大值,左负右正为极小值,对于含参数问题,注意分类讨论。考点四:利用导数求函数的最值例7(江苏卷17)某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km()按下列要求写出函数关系式:设BAO=(rad),将表示成的函数关系式;设OP(km) ,将表示成x的函数关系式()请你选用()中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短解析:()由条件知PQ 垂直平分AB,若BAO=(rad) ,则, 故,又OP1010ta,所以, 所求函数关系式为若OP=(km) ,则OQ10,所以OA =OB=所求函数关系式为()选择函数模型,令0 得sin ,因为,所以=,当时, ,是的减函数;当时, ,是的增函数,所以当=时,。这时点P 位于线段AB 的中垂线上,且距离AB 边km处。例4(1)求曲线在点(1,1)处的切线方程;(2)运动曲线方程为,求t=3时的速度。分析:根据导数的几何意义及导数的物理意义可知,函数y=f(x)在处的导数就是曲线y=f(x)在点处的切线的斜率。瞬时速度是位移函数S(t)对时间的导数。解:(1),即曲线在点(1,1)处的切线斜率k=0因此曲线在(1,1)处的切线方程为y=1(2)。例5 求下列函数单调区间(1) (2)(3) (4)解:(1) 时 , (2) ,(3) , ,(4) 定义域为 例7利用导数求和:(1);(2)。分析:这两个问题可分别通过错位相减法及利用二项式定理来解决。转换思维角度,由求导公式,可联想到它们是另外一个和式的导数,利用导数运算可使问题的解决更加简捷。解:(1)当x=1时,;当x1时,两边都是关于x的函数,求导得即(2),两边都是关于x的函数,求导得。令x=1得,即。例8设,求函数的单调区间.分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 解:. 当时 .(i)当时,对所有,有.即,此时在内单调递增.(ii)当时,对,有,即,此时在(0,1)内单调递增,又知函数在x=1处连续,因此,函数在(0,+)内单调递增(iii)当时,令,即.解得.因此,函数在区间内单调递增,在区间内也单调递增.令,解得.因此,函数在区间内单调递减.考点2:曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线.【问题2】(1)(2006湖南卷)曲线和y=x2在它们交点处的两条切线与x轴所围成的三角形面积是 .解析:曲线和y=x2在它们的交点坐标是(1,1),两条切线方程分别是y=x+2和y=2x1,它们与x轴所围成的三角形的面积是.(2)(2007年湖南文)已知函数在区间,内各有一个极值点(I)求的最大值;(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式思路启迪:用求导来求得切线斜率.解答过程:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;或当时,当时,由知是的一个极值点,则,所以,又由,得,故演练1(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )A B C D考查目的本题主要考查函数的导数和直线方程等基础知识的应用能力.解答过程与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.故选A.演练2( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )A.y=-3x或y=x B. y=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x 考查目的本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.解答过程解法1:设切线的方程为又故选A.解法2:由解法1知切点坐标为由故选A.演练3(全国II)过点(1,0)作抛物线y=x2+x+1的切线,则其中一条切线为( ) (A)2x+y+2=0 (B)3x-y+3=0 (C)x+y+1=0 (D)x-y+1=0解:y=2x+1,设切点坐标为(x0,y0),则切线的斜率为2x0+1,且y0=x02+x0+1于是切线方程为y-(x02+x0+1)=(2x0+1)(x-x0),因为点(1,0)在切线上,可解得x00或4,代入可验正D正确。选D演练4.已知两抛物线, 取何值时,有且只有一条公切线,求出此时公切线的方程.思路启迪:先对求导数.解答过程:函数的导数为,曲线在点P()处的切线方程为,即 曲线在点Q的切线方程是即 若直线是过点P点和Q点的公切线,则式和式都是的方程,故得,消去得方程, 若=,即时,解得,此时点P、Q重合.当时,和有且只有一条公切线,由式得公切线方程为 .演练5(2007湖北理)已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线相同(I)用表示,并求的最大值;(II)求证:()考查目的本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力解:()设与在公共点处的切线相同,由题意,即由得:,或(舍去)即有令,则于是当,即时,;当,即时,故在为增函数,在为减函数,于是在的最大值为()设,则故在为减函数,在为增函数,于是函数在上的最小值是故当时,有,即当时,例9已知抛物线与直线y=x+2相交于A、B两点,过A、B两点的切线分别为和。(1)求A、B两点的坐标; (2)求直线与的夹角。分析:理解导数的几何意义是解决本例的关键。解 (1)由方程组 解得 A(-2,0),B(3,5)(2)由y=2x,则,。设两直线的夹角为,根据两直线的夹角公式, 所以说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。考点3:导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1. 求函数的解析式; 2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式。【问题3】(2006年天津卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A1个 B2个 C3个D 4个考查目的本题主要考查函数的导数和函数图象性质等基础知识的应用能力.解答过程由图象可见,在区间内的图象上有一个极小值点.故选A.演练1(江西卷)对于R上可导的任意函数f(x),若满足(x1) f (x) 0,则必有( )A.f(0)f(2)2f(1)解:依题意,当x1时,f (x)0,函数f(x)在(1,)上是增函数;当x1时,f (x)0,f(x)在(,1)上是减函数,故f(x)当x1时取得最小值,即有f(0)f(1),f(2)f(1),故选C演练2若是的导数函数,的图像如图所示,则的图象可能是下面各图中的( D )xy0abxy0abxy0abxy0abxy0abA B C DyxO12-13演练3函数y= f(x)在定义域内可导,其图象如图所示记y= f(x)的导函数为y= f (x),则不等式f (x)0的解集为( A ) A BC D例6求证下列不等式(1) (2) (3) 证:(1) 为上 恒成立 在上 恒成立(2)原式 令 (3)令 【问题4】(2007年全国1)设函数在及时取得极值()求a、b的值;()若对于任意的,都有成立,求c的取值范围思路启迪:利用函数在及时取得极值构造方程组求a、b的值解答过程:(),因为函数在及取得极值,则有,即解得,()由()可知,当时,;当时,;当时,所以,当时,取得极大值,又,则当时,的最大值为因为对于任意的,有恒成立,所以,解得或,因此的取值范围为演练1(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:()的值;()的值.考查目的本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程解法一:()由图像可知,在上,在上,在上,故在上递增,在上递减,因此在处取得极大值,所以()由得解得解法二:()同解法一()设又所以,由即得所以演练2函数的值域是_.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。解答过程:由得,即函数的定义域为.,又,当时,函数在上是增函数,而,的值域是.演练3(2006年天津卷)已知函数,其中为参数,且(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围考查目的本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.解答过程()当时,则在内是增函数,故无极值.(),令,得.由(),只需分下面两种情况讨论. 当时,随x的变化的符号及的变化情况如下表:x0+0-0+极大值极小值因此,函数在处取得极小值,且.要使,必有,可得.由于,故.当时,随x的变化,的符号及的变化情况如下表:+0-0+极大值极小值因此,函数处取得极小值,且若,则.矛盾.所以当时,的极小值不会大于零.综上,要使函数在内的极小值大于零,参数的取值范围为.(III)解:由(II)知,函数在区间与内都是增函数。由题设,函数内是增函数,则a须满足不等式组 或 由(II),参数时时,.要使不等式关于参数恒成立,必有,即.综上,解得或.所以的取值范围是.演练4 (2007年全国2)已知函数在处取得极大值,在处取得极小值,且(1)证明;(2)若z=a+2b,求z的取值范围。解答过程求函数的导数()由函数在处取得极大值,在处取得极小值,知是的两个根所以当时,为增函数,由,得()在题设下,等价于即化简得此不等式组表示的区域为平面上三条直线:所围成的的内部,其三个顶点分别为:ba2124O在这三点的值依次为所以的取值范围为小结:本题的新颖之处在把函数的导数与线性规划有机结合【问题5】(2006年山东卷)设函数f(x)=ax(a+1)ln(x+1),其中a-1,求f(x)的单调区间.考查目的本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力解答过程由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情况如下表0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.演练(2006年湖北卷)设是函数的一个极值点.()求与的关系式(用表示),并求的单调区间;()设,.若存在使得成立,求的取值范围.考查目的本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解答过程()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则 f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x23x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(3,)上,f (x)0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e30,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域是a2,(a2)e4,由于(a2)(a6)a2a()20,所以只须仅须(a2)(a6)0,解得0a0,f(x)在定义域内递增,即 n=k+1时,命题成立由知,对任意,均 (2)解:令,则,递减, 时,即, 猜测,下证之n=1时,成立假设n=k时,成立则n=k+1时,由于递增,即n=k+1时,命题成立,由知,对任意,均点晴:由导数研究函数的单调性,再由单调性来证明不等式、数列有关的综合问题必将会成为今后高考的重点内容,在复习中要足够地重视。【问题7】已知双曲线与点M(1,1).(1)求证:过点M可作两条直线,分别与双曲线C两支相切;(2)设(1)中的两切点分别为A、B,其MAB是正三角形,求m的值及切点坐标。解答:(1)证明:设,要证命题成立只需要证明关于t的方程有两个符号相反的实根。,且t0,t1。设方程的两根分别为t1与t2,则由t1t2=m g(x0) 成立, 求实数 p 的取值范围.解:(I) 由题意得 f (e) = pe2ln e = qe2 (pq) (e + ) = 0而 e + 0p = q (II)由 (I) 知 f (x) = px2ln x f(x) = p + = 令 h(x) = px 22x + p,要使 f (x) 在其定义域 (0,+) 内为单调函数,只需 h(x) 在 (0,+) 内满足:h(x)0 或 h(x)0 恒成立. 5分 当 p = 0时, h(x) = 2x, x 0, h(x) 0, f(x) = 0时,h(x) = px 22x + p,其图象为开口向上的抛物线,对称轴为 x = (0,+),h(x)min = p只需 p1,即 p1 时 h(x)0,f(x)0f (x) 在 (0,+) 内为单调递增,故 p1适合题意. 当 p 0时,h(x) = px 22x + p,其图象为开口向下的抛物线,对称轴为 x = (0,+)只需 h(0)0,即 p0时 h(x)0在 (0,+) 恒成立.故 p 0 = 1,且 x = 1 时等号成立,故 ()max = 1p1由 f(x)0 p (1 + )0 p p()min,x 0而 0 且 x 0 时, 0,故 p0综上可得,p1或 p0 (III)g(x) = 在 1,e 上是减函数x = e 时,g(x)min = 2,x = 1 时,g(x)max = 2e即g(x) 2,2e p0 时,由 (II) 知 f (x) 在 1,e 递减 f (x)max = f (1) = 0 2,不合题意。 0 p 1 时,由x 1,e x0f (x) = p (x)2ln xx2ln x右边为 f (x) 当 p = 1 时的表达式,故在 1,e 递增 f (x)x2ln xe2ln e = e2 2,不合题意。 p1 时,由 (II) 知 f (x) 在 1,e 连续递增,f (1) = 0 g(x)min = 2,x 1,e f (x)max = f (e) = p (e)2ln e 2 p 综上,p 的取值范围是 (,+)例3、设函数(1)求函数的极值点(2)当时,若对任意的,恒有,求的取值范围(3)证明:解:(1),当 上无极值点当p0时,令的变化情况如下表:x(0,)+0极大值从上表可以看出:当p0 时,有唯一的极大值点 ()当p0时在处取得极大值,此极大值也是最大值,要使恒成立,只需, p的取值范围为1,+ ()令p=1,由()知, 结论成立变式1、已知函数(e为自然对数的底数)(1)求的最小值;(2)设不等式的解集为P,且,求实数a的取值范围;(3)设,证明:。例4、已知函数f(x)=(1)若h(x)=f(x)-g(x)存在单调增区间,求a的取值范围;(2)是否存在实数a0,使得方程在区间内有且只有两个不相等的实数根?若存在,求出a的取值范围?若不存在,请说明理由。解:(1)由已知,得h(x)= 且x0, 则h(x)=ax+2-=, 函数h(x)存在单调递增区间, h(x)0有解, 即不等式ax2+2x-10有x0的解. 当a0的解, 则方程ax2+2x-1=0至少有一个不重复正根, 而方程ax2+2x-1=0总有两个不相等的根时, 则必定是两个不相等的正根. 故只需=4+4a0, 即a-1. 即-1a0 时, y= ax2+2x-1的图象为开口向上的抛物线, ax2+2x-10 一定有x0的解. 综上, a的取值范围是(-1, 0)(0, +) (2)方程即为 等价于方程ax2+(1-2a)x-lnx=0 . 设H(x)= ax2+(1-2a)x-lnx, 于是原方程在区间()内根的问题, 转化为函数H(x)在区间()内的零点问题. H(x)=2ax+(1-2a)-= 当x(0, 1)时, H(x)0, H(x)是增函数; 若H(x)在()内有且只有两个不相等的零点, 只须 解得, 所以a的取值范围是(1, ) 变式1、已知x=是的一个极值点(1)求的值;(2)求函数的单调增区间;(3)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?解:(1) 因x=1是的一个极值点 即 2+b-1=0b= -1经检验,适合题意,所以b= -1 (2) 0 0x函数 的单调增区间为(3)=2x+lnx设过点(2,5)与曲线g (x)的切线的切点坐标为即 令h(x)=0h(x)在(0,2)上单调递减,在(2,)上单调递增又,h(2)=ln2-10,h(x)与x轴有两个交点过点(2,5)可作2条曲线y=g(x)的切线. 变式2、已知函数 (1)求f(x)在0,1上的极值; (2)若关于x的方程在0,1上恰有两个不同的实根,求实数b的取值范围.(1),令(舍去)单调递增;当单调递减.上的极大值 (2)由令,当上递增;当上递减而,恰有两个不同实根等价于总结提炼:1.函数的综合问题,这类问题涉及的知识点多,与数列、不等式等知识加以综合。主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力. 2.通过求导来研究函数性质是一种非常重要而有效的方法。通常的步骤:先求导,要注意求导后定义域的情况;将导数整理变形,能看出导数的符号性质或零点。再列表,从表中回答所要求解答的问题。3.对于含有字母参数的问题,可以通过分类,延伸长度,从而降低难度。也可以通过分离变量,转化为函数或不等式问题去解决合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题)已知函数.(1) 若为的极值点,求实数的值;(2) 若在上增函数,求实数的取值范围;(3) 若时,方程有实根,求实数的取值范围。解:(1)因为是函数的一个极值点,所以,进而解得:,经检验是符合的,所以 (2)显然结合定义域知道在上恒成立,所以且。同时此函数是时递减,时递增, 故此我们只需要保证,解得:(3)方法一、变量分离直接构造函数解:由于,所以: 当时,所以在上递增;当时,所以在上递减; 又 当时,所以在上递减;当时,所以上递增;当时,所以在上递减;又当时,当时,则且的取值范围为原函数草图二阶导数草图一阶导数草图,方法二、 构造: 从而在上为增函数;从而在上为减函数 而 分析点评:第(3)问的两种解法难易繁杂一目了然,关键在合理构造函数上。那么怎样合理构造函数呢?(1)抓住问题的实质,化简函数1、已知是二次函数,不等式的解集是,且在区间上的最大值. (1)求的解析式;(2)是否存在自然数,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有的值;若不存在,请说明理由。解:(1) (2)假设满足要求的实数存在,则,即有: ,即有:构造函数 画图分析:进而检验,知,所以存在实数使得在区间内有且只有两个不等的实数根。点评:本题关键是构造了函数,舍弃了原函数中分母问题得到了简化。变式练习:设函数,求已知当时,恒成立,求实数的取值范围。(2)抓住常规基本函数,利用函数草图分析问题:例: 已知函数的图像在点处的切线方程为设(1) 求证:当时,恒成立;(2) 试讨论关于的方程根的个数。解证:(1) (2)方程从而 因为所以方程可变为 令,得: 当时,在上为增函数;当时,在上为减函数;当时, 又所以函数在同一坐标系的大致图像如图所示 当即时,方程无解; 当即时,方程一解; 当即时,方程有2个根。分析点评:一次函数,二次函数,指对数函数,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。(3)复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数在区间上单调递减,在区间上单调递增。(1) 求实数的值.(2) 若关于的方程有3个不同的实数解,求实数的取值范围.(3) 若函数的图像与坐标轴无交点,求实数的取值范围。解:(1)利用 得: (2)因为 得 列表得因此有极大值极小值作出的示意图,如图:因为关于的方程有3个不同的实数解,令即关于的方程在上有3个不同的实数解,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 葡萄酒陈酿橡木桶选择
- 油气勘查环境影响评估
- 法人代持协议签合同
- 工厂社保代扣协议书
- 工作地点保密协议书
- 广告购买协议书范本
- 泥瓦工用工合同范本
- 店面转租房合同范本
- 工程广告协议书范本
- 泔水处置免责协议书
- 2025年资金管理专员岗位招聘面试参考试题及参考答案
- 2025年镇残联年度工作总结(6篇)
- 医院消防知识题库及答案
- 房地产公司工程质量管控实施细则
- 2026年怀化师范高等专科学校单招职业技能测试题库汇编
- 旅行社安全应急预案范本
- (2025)纪检监察综合业务知识考试题(含答案)
- (2025年)篮球裁判员考试题(附答案)
- 雨课堂在线学堂《三江源生态》单元考核测试答案
- 2026公考省考国考试题及答案
- 全国大学生职业规划大赛《冰雪运动与管理》专业生涯发展展示【高职(专科)】
评论
0/150
提交评论