


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考研数学备考微积分重点内容及常见类型 考研如过独木桥,在千军万马中脱颖而出总是需要想象不到的汗水和努力,为了帮助考研小伙伴更好的复习,下面由出guo为你精心准备了“考研数学备考:微积分重点内容及常见类型”,持续关注将可以持续获取更多的考试资讯! 时间过得很快,不知不觉快到了九月份,不知道大家数学复习的如何了,估计大家还有很多难点没有掌握。为此这篇文章希望对大家有所帮助。 一、多元函数(主要是二元、三元)的偏导数和全微分概念; 二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数; 三、方向导数和梯度(只对数学一要求); 四、多元函数微分在几何上的应用(只对数学一要求); 五、多元函数的极值和条件极值。 1.求二元、三元函数的偏导数、全微分。 2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。 3.求二元、三元函数的方向导数和梯度。 4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。 5.多元函数的极值在几何、物理与经济上的应用题。 第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。 极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。 1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系; 2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等; 3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理; 4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如弹性、边际等等。 1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程 确定的函数求导。 2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如证明在开区间至少存在一点满足,或讨论方程在给定区间内的根的个数等。 此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发递推出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。 3.利用洛必达法则求七种未定型的极限。 4.几何、物理、经济等方面的最大值、最小值应用题,解这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电设备动力系统安装方案
- 养鸭场病害防治管理体系方案
- 混凝土质量验收标准方案
- 水稻种植培训课件
- 水稻大变身课件
- 水稳施工方案课件
- 中药养护习题解析91课件
- 二零二五年度新能源技术研发与推广服务合同协议书
- 二零二五年度团体服饰定制合同范本
- 二零二五年度发行公司债券担保及债券发行风险合同
- 2025年贵州省中考英语试卷
- 政府职能边界界定-洞察及研究
- 新疆疫苗管理办法
- 2025年重庆出租车资格证区域考试题库区域考试
- 广州市越秀区招聘卫生健康系统事业单位事业编制人员考试真题2024
- 医疗废物监督管理课件
- 全国律师会费管理办法
- 危险源辨识、评价及控制培训
- 延缓慢性肾脏病进展临床管理指南(2025年)解读课件
- 土地管理培训课件
- 2025年山西中考历史试卷真题解读及答案讲解课件
评论
0/150
提交评论