全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学第一章集合与函数概念知识点总结一、集合有关概念1、集合的含义:把研究对象统称为元素,把一些元素组成的总体叫做集合。2、集合的中元素的三个特性:元素的确定性 元素的互异性 元素的无序性3、集合与元素的关系:属于与不属于关系元素与集合的关系是,或者,两者必居其一.4、集合的表示列举法:把集合中的元素一一列举出来,并用大括号“ ”括起来表集合的方法叫做列举法描述法:用集合所含元素的共同特征表示集合的方法称为描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数集C5、集合的分类:(1) 有限集:含有有限个元素的集合(2) 无限集:含有无限个元素的集合(3) 空集:不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若aA,则aB,我们就说集合A包含于集合B,或集合B包含集合A,记作AB,这时我们说集合A是集合B的子集.注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:元素相同则两集合相等即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集, 2n-2个非空真子集。三、集合的运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集记作,即CSA=韦恩图示SA性 质AA=A A=AB=BA ABAABBAA=A A=AAB=BA ABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=U A (CuA)= 二、函数的有关概念1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:A定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备)B值域 : 先考虑其定义域直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 R的分式;分离常数:适合分子分母皆为一次式(x有范围限制时要画图);单调性法:利用函数的单调性求值域;图象法:二次函数必画草图求其值域;利用对号函数几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数C区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 无穷区间2、函数的表示法:解析法、图像法和列表法(1)分段函数 在定义域的不同部分上有不同的解析表达式的函数。各部分的自变量的取值情况分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。(2)映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个;不要求集合B中的每一个元素在集合A中都有原象。三、函数的基本性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x1x2;作差f(x1)f(x2);变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)f(x)=0或f(x)f(-x)=1来判定; (3)利用定理,或借助函数的图象判定 .3、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法 待定系数法 换元法 消参法4、函数最大(小)值利用二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 38351-2019胶鞋、运动鞋制造过程中固体废弃物回收处理规范》专题研究报告
- 2025年大学四年级古籍数字化专业《古籍数字修复》期末考试测验卷及答案
- 2024年执业药师(西药)《药理学》章节测试(第四章)及答案
- 装潢美术设计师安全培训效果强化考核试卷含答案
- 混铁炉工操作能力模拟考核试卷含答案
- 《GBT 13952-2016 移动式平台及海上设施用电工电子产品环境条件参数分级》专题研究报告
- 船舶过闸及升船机调度员班组考核测试考核试卷含答案
- 柠檬酸制造工安全应急模拟考核试卷含答案
- 实木及实木复合地板备料工安全管理评优考核试卷含答案
- 公司化学铣切工设备技术规程
- 2025年秋国家开放大学《行政领导学》形考任务1-4参考答案
- 企业品牌营销推广方案范文
- 普货运输安全生产管理制度范本
- 火电厂消防系统知识培训课件
- 2025年江苏省港口集团社会招聘模拟试卷(含答案详解)
- 无菌操作专业知识培训课件
- (2025秋新版)湘教版八年级地理上册全册教案
- 2025至2030中国牛肉行业项目调研及市场前景预测评估报告
- 钢轨探伤培训课件
- 2025年度教育系统后备干部选拔考试题(含答案)
- 新版中华民族共同体概论课件第十二讲民族危亡与中华民族意识觉醒(1840-1919)-2025年版
评论
0/150
提交评论