




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德市隆化县存瑞中学2020届高三数学上学期第二次质检试题 文(含解析)一选择题(本大题共12小题,共60.0分)1.复数 (i为虚数单位)的共轭复数是A. 1+iB. 1iC. 1+iD. 1i【答案】B【解析】分析:化简已知复数z,由共轭复数的定义可得详解:化简可得z= z的共轭复数为1i.故选B点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题2.若集合,则=( ).A. B. C. D. 【答案】C【解析】【分析】直接根据并集的定义求解即可.【详解】因为,所以,根据并集的定义:是属于或属于的元素所组成的集合,可得,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.3.已知,若,则( )A. -5B. 5C. 1D. -1【答案】A【解析】【分析】通过平行可得m得值,再通过数量积运算可得结果.【详解】由于,故,解得,于是,所以.故选A.【点睛】本题主要考查共线与数量积的坐标运算,考查计算能力.4.已知等差数列an,若a2=10,a5=1,则an的前7项和为A. 112B. 51C. 28D. 18【答案】C【解析】【分析】根据等差数列的通项公式和已知条件列出关于数列的首项和公差的方程组,解出数列的首项和公差,再根据等差数列的前项和可得解.【详解】由等差数列的通项公式结合题意有: ,解得:,则数列的前7项和为: ,故选C.【点睛】本题考查等差数列的通项公式和前项公式,属于基础题.5.已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b等于()A. 10B. 9C. 8D. 5【答案】D【解析】【详解】由题意知,23cos2A+2cos2A-1=0,即cos2A=,又因ABC为锐角三角形,所以cosA=.ABC中由余弦定理知72=b2+62-2b6,即b2-b-13=0,即b=5或b=-(舍去),故选D.【此处有视频,请去附件查看】6.已知,是空间中两条不同的直线,为空间中两个互相垂直的平面,则下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】由题设, 则A. 若,则,错误;B. 若,则错误;D. 若,当 时不能得到,错误.故选C.7.函数y=sin2x的图象可能是A. B. C. D. 【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复8.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A. 内切B. 相交C. 外切D. 相离【答案】B【解析】化简圆到直线的距离 ,又 两圆相交. 选B【此处有视频,请去附件查看】9.在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是侧面AA1D1D与底面ABCD的中心,则下列说法错误的个数为DF平面D1EB1; 异面直线DF与B1C所成的角为;ED1与平面B1DC垂直; A. 0B. 1C. 2D. 3【答案】A【解析】【分析】由可判断;由,可得异面直线与所成的角即是直线与所成的角(或其补角),可判断;由且可判断;由,可判断,得解.【详解】对于,平面平面平面,所以正确;对于,因为,所以异面直线与所成的角即是直线与所成的角(或其补角),因为为正三角形,所以,所以正确;对于,且平面,即平面,所以正确;对于,所以正确,故选A.【点睛】本题考查线面平行的判定、异面直线所成的角、线面垂直的判定和等体积法求三棱锥的体积,属于基础题.10.已知点是抛物线上的一动点,为抛物线的焦点,是圆:上一动点,则的最小值为( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据抛物线定义和三角形三边关系可知当三点共线时,的值最小,根据圆的性质可知最小值为;根据抛物线方程和圆的方程可求得,从而得到所求的最值.【详解】如图所示,利用抛物线的定义知:当三点共线时,的值最小,且最小值为抛物线的准线方程:, 本题正确选项:【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.11.若则的最小值为A. 4B. 5C. 7D. 6【答案】C【解析】【分析】由已知得代入中化简得,而,再利用基本不等式可得最小值,得解.【详解】由已知,得,所以,那么,当且仅当时取得等号,所以,即的最小值为7,故选C.【点睛】本题主要考查基本不等式,关键于先化简已知表达式,巧用“1”构造基本不等式,属于基础题12.已知双曲线的左、右焦点分别为,是双曲线右支上一点,且若直线与圆相切,则双曲线的离心率为()A. B. C. 2D. 3【答案】B【解析】取线段PF1的中点为A,连接AF2,又|PF2|F1F2|,则AF2PF1,直线PF1与圆x2y2a2相切,且,由中位线的性质可知|AF2|2a,|PA|PF1|ac,4c2(ac)24a2,化简得,即,则双曲线的离心率为.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2c2a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二填空题(本大题共4小题,共20.0分)13.设,满足约束条件,则的最大值是_.【答案】7【解析】【分析】根据不等式组做出可行域,而表示直线在y轴上的截距,当直线过点A时,z取得最大值,由解得点A代入可得解.【详解】画出不等式组表示的可行域,如下图中的阴影部分所示,由得点,表示直线在y轴上的截距,当直线过点时,z取得最大值.故填:7.【点睛】本题考查简单的线性规划问题,做出可行域、理解目标函数的几何意义、结合数形结合找到目标函数取得最值的最优解是解决此类问题的常用步骤,属于基础题.14.点A(4,5)关于直线l的对称点为B(2,7),则l的方程为_【答案】3xy30【解析】【分析】先求出A、B的中点,再求AB的斜率,求出中垂线的斜率,然后用点斜式求出直线方程【详解】对称轴是以两对称点为端点的线段的中垂线,A、B的中点坐标(1,6),AB的斜率为:中垂线的斜率为:3则l的方程为:y6=3(x1)即:3xy+3=0故答案为:3xy+3=0【点睛】本题主要考查直线垂直斜率之间的关系,考查了直线的点斜式方程的应用,属于基础题.15.已知数列an的前n项和Snn22n1(nN*),则an_【答案】【解析】【分析】根据和项与通项关系得结果.【详解】当n2时,anSnSn12n1,当n1时,a1S14211,因此an.【点睛】本题考查和项与通项公式关系,考查基本分析求解能力.16.某几何体的三视图如图所示,则该几何体的内切球的半径为_【答案】【解析】【分析】根据几何体的三视图还原其直观图,由三视图以及边长可得出三棱锥的结构特征,底面是正三角形边长为,一个侧面垂直底面,再由棱锥的体积公式采用等体法即可求解.【详解】几何体是三棱锥,如图:底面是正三角形边长为,一个侧面垂直底面, 高为,几何体的表面积为:,几何体的体积为:,内切球的半径为r,所以,解得故答案为:【点睛】本题主要考查几何体的三视图以及棱锥的体积公式,解题的关键是根据三视图得出几何体的结构特征,此题也考查了学生的计算能力,综合性比较强.三、解答题(本大题共6小题,共70.0分)17.在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 【答案】(1);(2)2【解析】【分析】(1)首先利用对圆C的参数方程(为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,得;设,则由解得,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.【此处有视频,请去附件查看】18.设数列的前项和,满足,且成等差数列.(1)求数列的通项公式;(2)数列前项和,求.【答案】(1)(2)【解析】【分析】(1)由条件满足,求得数列为等比数列,且公比,再根据成等差数列,求得首项的值,进而可得数列的通项公式;(2)根据,利用等比数列的前项和公式求得数列的前项和为.【详解】(1)由已知,由,即,从而,又因为成等差数列,所以,所以,解得.所以数列是首项为,公比为的等比数列所以 .(2)由(1)得,所以.19.已知函数的部分图象如图所示.(1) 求函数的解析式;(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;(3) 若,求的值.【答案】(1)(2)见解析(3)【解析】【分析】(1)直接由函数图象求得和周期,再由周期公式求得,由五点作图的第三点求;(2)由先平移后改变周期和先改变周期后平移两种方法给出答案;(3)由求出,然后把转化为余弦利用倍角公式得答案【详解】解:(1). (2)法1:先将的图象向左平移个单位,再将所得图象纵坐标不变,横坐标压缩为原来的倍,所得图象即为的图象. 法2:先将的图象纵坐标不变,横坐标压缩为原来的倍,再将所得图象向左平移个单位,所得图象即为的图象. (3)由,得: , 而.20.如图,四棱锥中,底面是边长为 4的菱形,为中点(1)求证:平面;(2)求证:平面平面;(3)若,求三棱锥的体积【答案】(1)详见解析;(2)详见解析;(3)【解析】【分析】(1)利用条件可证明,再利用线面平行的判定即可得证;(2)根据线面垂直的判定可证明平面,再根据面面垂直的判定即可得证;(3)利用求得底面积和高即可求解【详解】(1)设,连结,为中点,为中点,又平面,平面,平面;(2)连结,,为中点,又底面为菱形,,平面,又平面,平面平面;(3)21.已知椭圆C:(ab0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且MNF2周长为8(1)求椭圆C的方程;(2)若直线ykxb与椭圆C分别交于A,B两点,且OAOB,试问点O到直线AB的距离是否为定值,证明你的结论【答案】(1); (2)见解析.【解析】【分析】(1)根据三角形周长为8,结合椭圆的定义可知,利用,即可求得和的值,求得椭圆方程;(2)分类讨论,当直线斜率斜存在时,联立,得到关于的一元二次方程,利用韦达定理及向量数量积的坐标运算,求得和的关系,利用点到直线的距离公式即可求得点到直线的距离是否为定值.【详解】(1)由题意知,4a=8,则a=2,由椭圆离心率,则b2=3椭圆C的方程;(2)由题意,当直线AB的斜率不存在,此时可设A(x0,x0),B(x0,-x0)又A,B两点在椭圆C上,点O到直线AB的距离,当直线AB的斜率存在时,设直线AB的方程为y=kx+b设A(x1,y1),B(x2,y2)联立方程,消去y得(3+4k2)x2+8kbx+4b2-12=0由已知0,x1+x2=,x1x2=,由OAOB,则x1x2+y1y2=0,即x1x2+(kx1+b)(kx2+b)=0,整理得:(k2+1)x1x2+kb(x1+x2)+b2=0, 7b2=12(k2+1),满足0点O到直线AB的距离为定值综上可知:点O到直线AB距离d=为定值【点睛】本题主要考查椭圆的定义及椭圆标准方程、圆锥曲线的定值问题以及点到直线的距离公式,属于难题. 探索圆锥曲线的定值问题常见方法有两种: 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知函数(1)求曲线在点处切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度国际贸易结算与风险控制服务合同
- 2025版宿舍管理员绿色节能技术应用服务合同
- 2025版机场候机厅软装设计施工合同
- 2025年度吊装工程合同范本(含吊装设备维护与保养)
- 2025年度事业单位实习生实习合同
- 2025版绿色环保住宅区绿化施工与维护合同
- 2025版数据中心通风系统升级改造合同
- 2025年度男方外遇婚姻解除协议书范本
- 2025年度房产按揭贷款与装修贷优惠利率合同
- 2025年清洁服务人员安全培训及管理合同范本
- 《免除烦恼》课件
- 《非权力影响力》课件
- 2025年江西南昌市西湖城市建设投资发展集团有限公司招聘笔试参考题库附带答案详解
- 职业教育产教融合型数字化教材开发研究
- 文学传播学概论课件
- 第3单元主题活动三《创意玩具DIY》(课件)三年级上册综合实践活动
- 商务英语词汇大全
- 麻醉质量控制专家共识
- 反走私课件完整版本
- 2024-2025学年小学劳动一年级上册人教版《劳动教育》教学设计合集
- You Raise Me Up二部合唱简谱
评论
0/150
提交评论