《导数及其应用》知识点总结_第1页
《导数及其应用》知识点总结_第2页
《导数及其应用》知识点总结_第3页
《导数及其应用》知识点总结_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 导数及其应用导数及其应用 知识点总结知识点总结 一 导数的概念和几何意义 1 函数的平均变化率 函数在区间上的平均变化率为 f x 12 x x 21 21 f xf x xx 2 导数的定义 设函数在区间上有定义 若无限趋近于 yf x a b 0 xa b x 0 时 比值无限趋近于一个常数 A 则称函数在处可导 00 f xxf xy xx f x 0 xx 并称该常数 A 为函数在处的导数 记作 函数在处的导数的 f x 0 xx 0 fx f x 0 xx 实质是在该点的瞬时变化率 3 求函数导数的基本步骤 1 求函数的增量 2 求平均 00 yf xxf x 变化率 3 取极限 当无限趋近与 0 时 无 00 f xxf x x x 00 f xxf x x 限趋近与一个常数 A 则 0 fxA 4 导数的几何意义 函数在处的导数就是曲线在点处的切线的斜率 由此 f x 0 xx yf x 00 xf x 可以利用导数求曲线的切线方程 具体求法分两步 1 求出在 x0处的导数 即为曲线在点处的切线的斜率 yf x yf x 00 xf x 2 在已知切点坐标和切线斜率的条件下 求得切线方程为 000 yyfxxx 当点不在上时 求经过点 P 的的切线方程 可设切点坐标 00 P xy yf x yf x 由切点坐标得到切线方程 再将 P 点的坐标代入确定切点 特别地 如果曲线在 yf x 点处的切线平行与 y 轴 这时导数不存在 根据切线定义 可得切线方程为 00 xf x 0 xx 5 导数的物理意义 质点做直线运动的位移 S 是时间 t 的函数 则表示瞬时速度 表 S t VS t av t 示瞬时加速度 二 导数的运算 1 常见函数的导数 2 1 k b 为常数 2 C 为常数 kxbk 0C 3 4 1x 2 2xx 5 6 32 3xx 2 11 x x 7 8 为常数 1 2 x x 1 x x 9 10 ln 0 1 xx aaa aa 11 log log 0 1 ln aa xeaa xxa 11 12 xx ee 1 ln x x 13 14 sin cosxx cos sinxx 2 函数的和 差 积 商的导数 1 f xg xfxg x 2 C 为常数 Cf xCfx 3 f x g xfx g xf x g x 4 2 0 f xfx g xf x g x g x g x gx 3 简单复合函数的导数 若 则 即 yf uuaxb xux yyu xu yya 三 导数的应用 1 求函数的单调性 利用导数求函数单调性的基本方法 设函数在区间内可导 yf x a b 1 如果恒 则函数在区间上为增函数 0fx yf x a b 2 如果恒 则函数在区间上为减函数 0fx yf x a b 3 如果恒 则函数在区间上为常数函数 0fx yf x a b 利用导数求函数单调性的基本步骤 求函数的定义域 求导数 yf x fx 解不等式 解集在定义域内的不间断区间为增区间 解不等式 解 0fx 0fx 集在定义域内的不间断区间为减区间 3 反过来 也可以利用导数由函数的单调性解决相关问题 如确定参数的取值范围 设函数在区间内可导 yf x a b 1 如果函数在区间上为增函数 则 其中使的值不构 yf x a b 0fx 0fx x 成区间 2 如果函数在区间上为减函数 则 其中使的值不构 yf x a b 0fx 0fx x 成区间 3 如果函数在区间上为常数函数 则恒成立 yf x a b 0fx 2 求函数的极值 设函数在及其附近有定义 如果对附近的所有的点都有 yf x 0 x 0 x 或 则称是函数的极小值 或极大值 0 f xf x 0 f xf x 0 f x f x 可导函数的极值 可通过研究函数的单调性求得 基本步骤是 1 确定函数的定义域 2 求导数 3 求方程的全部实根 f x fx 0fx 顺次将定义域分成若干个小区间 并列表 x 变化时 和值的 12n xxx fx f x 变化情况 x 1 x 1 x 12 x x n x n x fx 正负0正负0正负 f x 单调性单调性单调性 4 检查的符号并由表格判断极值 fx 3 求函数的最大值与最小值 如果函数在定义域 I 内存在 使得对任意的 总有 则称 f x 0 xxI 0 f xf x 为函数在定义域上的最大值 函数在定义域内的极值不一定唯一 但在定义域内的 0 f x 最值是唯一的 求函数在区间上的最大值和最小值的步骤 f x a b 1 求在区间上的极值 f x a b 2 将第一步中求得的极值与比较 得到在区间上的最大值与最 f af b f x a b 小值 4 解决不等式的有关问题 4 1 不等式恒成立问题 绝对不等式问题 可考虑值域 的值域是时 f x xA a b 不等式恒成立的充要条件是 即 0f x max 0f x 0b 不等式恒成立的充要条件是 即 0f x min 0f x 0a 的值域是时 f x xA a b 不等式恒成立的充要条件是 0f x 0b 不等式恒成立的充要条件是 0f x 0a 2 证明不等式可转化为证明 或利用函数的单调性 转化 0f x max

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论