2013年全国高考理科数学试题分类汇编.doc_第1页
2013年全国高考理科数学试题分类汇编.doc_第2页
2013年全国高考理科数学试题分类汇编.doc_第3页
2013年全国高考理科数学试题分类汇编.doc_第4页
2013年全国高考理科数学试题分类汇编.doc_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年全国高考理科数学试题分类汇编排列、组合及二项式定理一、选择题 (2013年普通高等学校招生统一考试新课标卷数学(理)(纯WORD版含答案)已知的展开式中的系数为,则()ABCD【答案】D (2013年普通高等学校招生统一考试山东数学(理)试题(含答案)用0,1,9十个数字,可以组成有重复数字的三位数的个数为()A243B252C261D279【答案】B (2013年高考新课标1(理)设为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若,则()A5B6C7D8【答案】B (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)的展开式中的系数是()ABCD【答案】D (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)满足,且关于x的方程有实数解的有序数对的个数为()A14B13C12D10【答案】B (2013年上海市春季高考数学试卷(含答案))的二项展开式中的一项是()ABCD【答案】C (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)使得()ABCD 【答案】B (2013年高考四川卷(理)从这五个数中,每次取出两个不同的数分别为,共可得到的不同值的个数是()ABCD【答案】C (2013年高考陕西卷(理)设函数 , 则当x0时, 表达式的展开式中常数项为()A-20B20C-15D15【答案】A (2013年高考江西卷(理)(x2-)5展开式中的常数项为()A80B-80C40D-40【答案】C 二、填空题(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为,所以36的所有正约数之和为参照上述方法,可求得2000的所有正约数之和为_【答案】4836 (2013年高考四川卷(理)二项式的展开式中,含的项的系数是_.(用数字作答)【答案】10 (2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为_(结果用数值表示).【答案】 (2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)将六个字母排成一排,且均在的同侧,则不同的排法共有_种(用数字作答)【答案】480 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)从名骨科.名脑外科和名内科医生中选派人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有人的选派方法种数是_(用数字作答)【答案】 (2013年普通高等学校招生统一考试天津数学(理)试题(含答案) 的二项展开式中的常数项为_.【答案】15 (2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)设二项式的展开式中常数项为,则_.【答案】 (2013年高考上海卷(理)设常数,若的二项展开式中项的系数为,则【答案】 (2013年高考北京卷(理)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_.【答案】96 (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)若的展开式中的系数为7,则实数_.【答案】 (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)个人排成一行,其中甲、乙两人不相邻的不同排法共有_种.(用数字作答).【答案】480 数列一、选择题 (2013年高考上海卷(理)在数列中,若一个7行12列的矩阵的第i行第j列的元素,()则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)63【答案】A. (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)已知数列满足,则的前10项和等于(A) (B) (C) (D)【答案】C (2013年高考新课标1(理)设的三边长分别为,的面积为,若,则()A.Sn为递减数列 B.Sn为递增数列C.S2n-1为递增数列,S2n为递减数列D.S2n-1为递减数列,S2n为递增数列【答案】B (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)函数的图像如图所示,在区间上可找到个不同的数使得则的取值范围是(A) (B) (C) (D)【答案】B (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)已知等比数列的公比为q,记则以下结论一定正确的是( )A.数列为等差数列,公差为 B.数列为等比数列,公比为C.数列为等比数列,公比为 D.数列为等比数列,公比为【答案】C (2013年普通高等学校招生统一考试新课标卷数学(理)(纯WORD版含答案)等比数列的前项和为,已知,则(A) (B) (C) (D)【答案】C (2013年高考新课标1(理)设等差数列的前项和为,则 ( )A.3 B.4 C.5 D.6【答案】C (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)下面是关于公差的等差数列的四个命题: 其中的真命题为(A) (B) (C) (D)【答案】D (2013年高考江西卷(理)等比数列x,3x+3,6x+6,.的第四项等于A.-24 B.0 C.12 D.24【答案】A 二、填空题(2013年高考四川卷(理)在等差数列中,且为和的等比中项,求数列的首项、公差及前项和.【答案】解:设该数列公差为,前项和为.由已知,可得 . 所以, 解得,或,即数列的首相为4,公差为0,或首相为1,公差为3. 所以数列的前项和或 (2013年普通高等学校招生统一考试新课标卷数学(理)(纯WORD版含答案)等差数列的前项和为,已知,则的最小值为_.【答案】 (2013年高考湖北卷(理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第个三角形数为.记第个边形数为,以下列出了部分边形数中第个数的表达式:三角形数 正方形数 五边形数 六边形数 可以推测的表达式,由此计算_.选考题【答案】1000 (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)在正项等比数列中,则满足的最大正整数 的值为_.【答案】12 (2013年高考湖南卷(理)设为数列的前n项和,则(1)_; (2)_.【答案】; (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)当时,有如下表达式:两边同时积分得:从而得到如下等式: 请根据以下材料所蕴含的数学思想方法,计算:【答案】 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)已知是等差数列,公差,为其前项和,若成等比数列,则【答案】 (2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前项和_.【答案】 (2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版)在等差数列中,已知,则_.【答案】 (2013年高考陕西卷(理)观察下列等式: 照此规律, 第n个等式可为_. 【答案】 (2013年高考新课标1(理)若数列的前n项和为Sn=,则数列的通项公式是=_.【答案】=. (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)如图,互不-相同的点和分别在角O的两条边上,所有相互平行,且所有梯形的面积均相等.设若则数列的通项公式是_.【答案】 (2013年高考北京卷(理)若等比数列an满足a2+a4=20,a3+a5=40,则公比q=_;前n项和Sn=_.【答案】2, (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)已知等比数列是递增数列,是的前项和,若是方程的两个根,则_.【答案】63 三、解答题(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)设函数,证明:()对每个,存在唯一的,满足;()对任意,由()中构成的数列满足.【答案】解: () 是x的单调递增函数,也是n的单调递增函数. . 综上,对每个,存在唯一的,满足;(证毕) () 由题知 上式相减: . 法二: (2013年高考上海卷(理)(3分+6分+9分)给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.【答案】:(1)因为,故, (2)要证明原命题,只需证明对任意都成立, 即只需证明 若,显然有成立; 若,则显然成立 综上,恒成立,即对任意的, (3)由(2)知,若为等差数列,则公差,故n无限增大时,总有 此时, 即 故, 即, 当时,等式成立,且时,此时为等差数列,满足题意; 若,则, 此时,也满足题意; 综上,满足题意的的取值范围是. (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分10分.设数列,即当时,记,对于,定义集合(1)求集合中元素的个数; (2)求集合中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列的定义得:, , , 集合中元素的个数为5 (2)证明:用数学归纳法先证 事实上, 当时, 故原式成立 假设当时,等式成立,即 故原式成立 则:,时, 综合得: 于是 由上可知:是的倍数 而,所以是 的倍数 又不是的倍数, 而 所以不是的倍数 故当时,集合中元素的个数为 于是当时,集合中元素的个数为 又 故集合中元素的个数为 (2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)在公差为的等差数列中,已知,且成等比数列.(1)求; (2)若,求【答案】解:()由已知得到: ; ()由(1)知,当时, 当时, 当时, 所以,综上所述:; (2013年高考湖北卷(理)已知等比数列满足:,.(I)求数列的通项公式;(II)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:,又, 所以数列的通项或 (II)若,不存在这样的正整数; 若,不存在这样的正整数. (2013年普通高等学校招生统一考试山东数学(理)试题(含答案)设等差数列的前n项和为,且,.()求数列的通项公式;()设数列前n项和为,且 (为常数).令.求数列的前n项和.【答案】解:()设等差数列的首项为,公差为, 由,得 , 解得, 因此 ()由题意知: 所以时, 故, 所以, 则 两式相减得 整理得 所以数列数列的前n项和 (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分16分.设是首项为,公差为的等差数列,是其前项和.记,其中为实数.(1)若,且成等比数列,证明:();(2)若是等差数列,证明:.【答案】证明:是首项为,公差为的等差数列,是其前项和 (1) 成等比数列 左边= 右边= 左边=右边原式成立 (2)是等差数列设公差为,带入得: 对恒成立 由式得: 由式得: 法二:证:(1)若,则,. 当成等比数列, 即:,得:,又,故. 由此:,. 故:(). (2), . () 若是等差数列,则型. 观察()式后一项,分子幂低于分母幂, 故有:,即,而0, 故. 经检验,当时是等差数列. (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)等差数列的前项和为,已知,且成等比数列,求的通项式.【答案】 (2013年普通高等学校招生统一考试天津数学(理)试题(含答案)已知首项为的等比数列不是递减数列, 其前n项和为, 且S3 + a3, S5 + a5, S4 + a4成等差数列. () 求数列的通项公式; () 设, 求数列的最大项的值与最小项的值. 【答案】 (2013年高考江西卷(理)正项数列an的前项和an满足:(1)求数列an的通项公式an;(2)令,数列bn的前项和为.证明:对于任意的,都有【答案】(1)解:由,得. 由于是正项数列,所以. 于是时,. 综上,数列的通项. (2)证明:由于. 则. . (2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版)设数列的前项和为.已知,.() 求的值;() 求数列的通项公式;() 证明:对一切正整数,有.【答案】.(1) 解: ,. 当时, 又, (2)解: ,. 当时, 由 ,得 数列是以首项为,公差为1的等差数列. 当时,上式显然成立. (3)证明:由(2)知, 当时,原不等式成立. 当时, ,原不等式亦成立. 当时, 当时,原不等式亦成立. 综上,对一切正整数,有. (2013年高考北京卷(理)已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项,的最小值记为Bn,dn=An-Bn .(I)若an为2,1,4,3,2,1,4,3,是一个周期为4的数列(即对任意nN*,),写出d1,d2,d3,d4的值;(II)设d为非负整数,证明:dn=-d(n=1,2,3)的充分必要条件为an为公差为d的等差数列;(III)证明:若a1=2,dn=1(n=1,2,3,),则an的项只能是1或者2,且有无穷多项为1.【答案】(I) (II)(充分性)因为是公差为的等差数列,且,所以 因此,. (必要性)因为,所以. 又因为,所以. 于是,. 因此,即是公差为的等差数列. (III)因为,所以,.故对任意. 假设中存在大于2的项. 设为满足的最小正整数,则,并且对任意,. 又因为,所以,且. 于是,. 故,与矛盾. 所以对于任意,有,即非负整数列的各项只能为1或2. 因此对任意,所以. 故. 因此对于任意正整数,存在满足,且,即数列有无穷多项为1. (2013年高考陕西卷(理)设是公比为q的等比数列. () 导的前n项和公式; () 设q1, 证明数列不是等比数列. 【答案】解:() 分两种情况讨论. . 上面两式错位相减: . 综上, () 使用反证法. 设是公比q1的等比数列, 假设数列是等比数列.则 当=0成立,则不是等比数列. 当成立,则 .这与题目条件q1矛盾. 综上两种情况,假设数列是等比数列均不成立,所以当q1时, 数列不是等比数列. 三角函数一、选择题 (2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)已知,则A. B. C. D.【答案】C (2013年高考陕西卷(理)设ABC的内角A, B, C所对的边分别为a, b, c, 若, 则ABC的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B (2013年普通高等学校招生统一考试天津数学(理)试题(含答案)在ABC中, 则 = (A) (B) (C) (D) 【答案】C (2013年普通高等学校招生统一考试山东数学(理)试题(含答案)将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为(A) (B) (C)0 (D) 【答案】B (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)在,内角所对的边长分别为且,则A. B. C. D. 【答案】A (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)已知函数,下列结论中错误的是(A)的图像关于中心对称 (B)的图像关于直线对称(C)的最大值为 (D)既奇函数,又是周期函数【答案】C (2013年普通高等学校招生统一考试山东数学(理)试题(含答案)函数的图象大致为【答案】D (2013年高考四川卷(理)函数的部分图象如图所示,则的值分别是( )(A) (B) (C) (D)【答案】A (2013年上海市春季高考数学试卷(含答案))既是偶函数又在区间上单调递减的函数是( )(A) (B) (C) (D)【答案】B (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案) ( )A. B. C. D.【答案】C (2013年高考湖南卷(理)在锐角中,角所对的边长分别为.若A. B. C. D. 【答案】D (2013年高考湖北卷(理)将函数的图像向左平移个长度单位后,所得到的图像关于轴对称,则的最小值是( ) A. B. C. D. 【答案】B 二、填空题(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)中,是的中点,若,则_.【答案】 (2013年高考新课标1(理)设当时,函数取得最大值,则_【答案】. (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)如图中,已知点D在BC边上,ADAC,则的长为_ 【答案】 (2013年上海市春季高考数学试卷(含答案))函数的最小正周期是_【答案】 (2013年高考四川卷(理)设,则的值是_.【答案】 (2013年高考上海卷(理)若,则【答案】. (2013年高考上海卷(理)已知ABC的内角A、B、C所对应边分别为a、b、c,若,则角C的大小是_(结果用反三角函数值表示)【答案】 (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)已知是第三象限角,则_.【答案】 (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)函数的最小正周期为_.【答案】 (2013年上海市春季高考数学试卷(含答案))在中,角所对边长分别为,若,则_【答案】7 (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)设的内角所对边的长分别为.若,则则角_.【答案】 (2013年普通高等学校招生统一考试新课标卷数学(理)(纯WORD版含答案)设为第二象限角,若,则_.【答案】 (2013年高考江西卷(理)函数的最小正周期为为_.【答案】 (2013年上海市春季高考数学试卷(含答案))函数的最大值是_【答案】5 三、解答题(2013年高考北京卷(理)在ABC中,a=3,b=2,B=2A.(I)求cosA的值; (II)求c的值.【答案】解:(I)因为a=3,b=2,B=2A. 所以在ABC中,由正弦定理得.所以.故. (II)由(I)知,所以.又因为B=2A,所以.所以. 在ABC中,. 所以. (2013年高考陕西卷(理)已知向量, 设函数. () 求f (x)的最小正周期. () 求f (x) 在上的最大值和最小值. 【答案】解:() =. 最小正周期. 所以最小正周期为. () . . 所以,f (x) 在上的最大值和最小值分别为. (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)在中,内角的对边分别是,且.(1)求; (2)设,求的值.【答案】 由题意得 (2013年普通高等学校招生统一考试天津数学(理)试题(含答案)已知函数. () 求f(x)的最小正周期; () 求f(x)在区间上的最大值和最小值. 【答案】 (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)设向量(I)若 (II)设函数【答案】 (2013年高考上海卷(理)(6分+8分)已知函数,其中常数;(1)若在上单调递增,求的取值范围;(2)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.【答案】(1)因为,根据题意有 (2) , 或, 即的零点相离间隔依次为和, 故若在上至少含有30个零点,则的最小值为. (2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对)设的内角的对边分别为,.(I)求(II)若,求.【答案】 (2013年高考四川卷(理)在中,角的对边分别为,且.()求的值;()若,求向量在方向上的投影.【答案】解:由,得 , 即, 则,即 由,得, 由正弦定理,有,所以,. 由题知,则,故. 根据余弦定理,有, 解得或(舍去). 故向量在方向上的投影为 (2013年普通高等学校招生统一考试山东数学(理)试题(含答案)设的内角所对的边分别为,且,.()求的值; ()求的值.【答案】解:()由余弦定理,得, 又,所以,解得,. ()在中, 由正弦定理得 , 因为,所以为锐角,所以 因此 . (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)已知函数的最小正周期为.()求的值; ()讨论在区间上的单调性.【答案】解: () .所以 () 所以 (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由.(3)求实数与正整数,使得在内恰有2013个零点.【答案】解:()由函数的周期为,得 又曲线的一个对称中心为, 故,得,所以 将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数 ()当时, 所以 问题转化为方程在内是否有解 设, 则 因为,所以,在内单调递增 又, 且函数的图象连续不断,故可知函数在内存在唯一零点, 即存在唯一的满足题意 ()依题意,令 当,即时,从而不是方程的解,所以方程等价于关于的方程, 现研究时方程解的情况 令, 则问题转化为研究直线与曲线在的交点情况 ,令,得或 当变化时,和变化情况如下表当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 故当时,直线与曲线在内有无交点,在内有个交点; 当时,直线与曲线在内有个交点,在内无交点; 当时,直线与曲线在内有个交点,在内有个交点 由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,所以 综上,当,时,函数在内恰有个零点 (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分14分.已知,.(1)若,求证:;(2)设,若,求的值.【答案】解:(1) 即, 又, (2) 即 两边分别平方再相加得: (2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版)已知函数,.() 求的值; () 若,求.【答案】(); () 因为,所以, 所以, 所以. (2013年高考湖南卷(理)已知函数.(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合.【答案】解: (I). (II) (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分16分.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,.(1)求索道的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?CBA【答案】解:(1), , 根据得 (2)设乙出发t分钟后,甲.乙距离为d,则 即 时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m) 乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V ,则 为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内 法二:解:(1)如图作BDCA于点D, 设BD=20k,则DC=25k,AD=48k, AB=52k,由A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论