信号与系统期末复习材料_第1页
信号与系统期末复习材料_第2页
信号与系统期末复习材料_第3页
信号与系统期末复习材料_第4页
信号与系统期末复习材料_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

信号与系统期末复习材料信号与系统期末复习一、基础知识点:1.信号的频带宽度(带宽)与信号的脉冲宽度成反比,信号的脉冲宽度越宽,频带越窄;反之,信号脉冲宽度越窄,其频带越宽。2. 系统对信号进行无失真传输时应满足的条件:系统的幅频特性在整个频率范围()内应为常量。系统的相频特性在整个频率范围内应与成正比,比例系数为-3.矩形脉冲信号的周期与频谱线的间隔存在着倒数的关系。4.零输入响应(ZIR)从观察的初始时刻(例如t=0)起不再施加输入信号(即零输入),仅由该时刻系统本身具有的初始状态引起的响应称为零输入响应,或称为储能响应。5.零状态响应(ZSR)在初始状态为零的条件下,系统由外加输入(激励)信号引起的响应称为零状态响应,或称为受迫响应。6.系统的完全响应也可分为:完全响应=零输入响应+零状态响应7.阶跃序列可以用不同位移的单位阶跃序列之和来表示。8.离散信号指的是:信号的取值仅在一些离散的时间点上才有定义。9.信号的三大分析方法:时域分析法 频域分析法 复频域分析法10.信号三大解题方法傅里叶:研究的领域:频域 分析的方法:频域分析法拉普拉斯:研究的领域:复频域 分析的方法:复频域分析法Z变换:主要针对离散系统,可以将差分方程变为代数方程,使得离散系统的分析简化。11.采样定理(又称为奈奎斯特采样频率)如果为带宽有限的连续信号,其频谱的最高频率为,则以采样间隔对信号进行等间隔采样所得的采样信号将包含原信号的全部信息,因而可利用完全恢复出原信号。12.设脉冲宽度为1ms,频带宽度为,如果时间压缩一半,频带扩大2倍。13.在Z变换中,收敛域的概念:对于给定的任意有界序列,使上式收敛的所有z值的集合称为z变化的收敛域。根据级数理论,上式收敛的充分必要条件 F(z)绝对可和,即。14.信号的频谱包括: 幅度谱 相位谱15.三角形式的傅里叶级数表示为:当为奇函数时,其傅里叶级数展开式中只有sinnt分量,而无直流分量和cos分量。16.离散线性时不变系统的单位序列响应是。17.看到这张图,直流分量就是4!f(t)t-461-6-4-118.周期信号的频谱具有的特点:频谱图由频率离散的谱线组成,每根谱线代表一个谐波分量。这样的频谱称为不连续频谱或离散频谱。频谱图中的谱线只能在基波频率的整数倍频率上出现。频谱图中各谱线的高度,一般而言随谐波次数的增高而逐渐减小。当谐波次数无限增高时,谐波分量的振幅趋于无穷小。19.信号频谱的知识点:非周期信号的频谱为连续谱。若信号在时域持续时间有限,则其频域在频域延续到无限。20.根据波形,写出函数表达式(用表示):f(t)t1121. 为冲激函数定义:特性:与阶跃函数的关系:采样(筛选)性。若函数在t=0连续,由于只在t=0存在,故有:若在连续,则有上述说明,函数可以把信号在某时刻的值采样(筛选)出来。重要积分公式:例题:计算下列各式: 二、卷积1.定义:2.代数性质:交换律:结合律:分配律:2.微分和积分特性微分特性:积分特性:微积分特性:*任意信号与卷积又是即由微分特性则:3.延时特性:4.重要卷积公式:例题:求下列卷积 三、傅里叶变换1.周期信号的三角级数表示 【 】其中: ; ; 2.周期信号的指数级数表示3.非周期信号的傅里叶变换反变换:4.常用非周期信号的频谱门函数冲激信号 直流信号 指数信号单位阶跃信号5.傅里叶变换的性质与应用线性性质信号的延时与相位移动脉冲展缩与频带的变化表明:信号时域波形的压缩,对应其频谱图形的扩展;时域波形的扩展对应其频域图形的压缩,且两域内展缩的倍数是一致的。信号的调制与频谱搬移周期信号的频谱函数时域微分特性时域积分特性6.卷积定理及其应用若; 则例题1:试利用卷积定理求下列信号的频谱函数例题2:若已知;求,。例题3:如图所示已知,求例题4:如图所示周期锯齿波信号f(t),试求三角形式的傅里叶级数。例题5:设信号,;试求的频谱函数。例题6:求的频谱函数例题7:已知,用傅里叶性质,求一阶微分以及的积分。四、拉普拉斯变换1.单边拉普拉斯的定义:F(s) = 2.常用拉普拉斯变换 ; ; 3.拉普拉斯变换的基本性质 线性时移性比例性(尺度变换)幅频移特性时域微分特性时域积分特性4.求拉普拉斯反变换D(s)=0的根(不含重根)D(s)=0仅含重根(n=1,2,3m)5.微分方程的拉普拉斯变换解法例则6.电路S域模型电阻R上的时域电压-电流关系为一代数方程两边取拉氏变换,就得到复频域(S域)中的电压-电流象函数关系为电容C上的时域电压-电流关系为两边取拉氏变换,利用微分性质得时的代数关系 或 电感L上的时域电压-电流关系为两边取拉氏变换,就可得出S域内的电压-电流关系为 或 KCL和KVL ; 分别取拉氏变换,可得基尔霍夫定律的S域形式 ; 7.卷积定理时域卷积变换到S域的特性8.重要的函数为系统函数 ; ; 阶跃响应 , 则例题1:若已知;求,。例题2:求下列函数的单边拉氏变换 例题3:求下列象函数的拉氏反变换 例题4:已知LTI的微分方程,试求其阶跃响应s(t)和冲激响应h(t)。例题5:已知,零输入响应为,若输入,求系统响应。例题6:如下图所示,已知H1=;H2=;H3=,求冲激响应h(t)。例题7:已知的全响应为;的全响应为,求冲激响应h(t)。例题8:设系统微分方程为,已知,试用拉氏变换法求零输入响应和零状态响应。五、Z变换1.单边Z变换的定义:F(z)的反变换:2.典型序列的Z变换单位序列所以阶跃序列所以指数序列所以3.常用序列的Z变换 4.求Z反变换F(z)仅含有一阶极点 F(z)仅含有重极点(n=1,2,3m)5.Z变换的主要性质线性移位特性对于双边序列:例如:对于单边序列:例如: ; 比例性(尺度变换)6.卷积定理设; 则例题1:求下列离散信号的z变换 例题2:求下列F(z)的反变换f(n) 例题3:用单边z变换解差分方程六、系统函数1.系统框图:当系统由两个子系统级联构成时,如下图所示,系统函数H(s)等于两个子系统函数的乘积。 当系统由两个子系统并联构成时,如下图所示,系统函数H(s)等于两个子系统函数的和。 当两个子系统反馈连接时,如下图所示。 2.系统函数的零、极点:零点:让系统函数分子的值为0,所解出的点,在图中用“o”表示。极点:让系统函数分母的值为0,所解出的点,在图中用“”表示。若为n重零点或极点,可在其旁注以“(n)”。3.系统稳定的判断方法:稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的。临界稳定:若H(s)的虚轴上有s=0的单极点或一对共轭单极点,其余极点全在s左半平面,则系统是临界稳定的。不稳定:H(s)只要有一个极点位于s右半平面,或在虚轴上有二阶或二阶以上的重极点,则系统是不稳定的。例题1:已知;,求系统函数H(s),并判断其稳定性。例题2:根据图,判断系统是否稳定。例题3:已知,求系统的冲激响应,阶跃响应,并画出零极点分布图,并判断其稳定性。例题4:已知,求其零状态响应,并画出它的零点和极点,并判断其稳定性。例题5:已知连续系统由两个子系统级联而成,如图所示,若描述两个子系统的微分方程分别为;。求每个子系统的系统函数H1(s), H2(s)及整个系统的单位冲激响应h(t);画出系统的零极点图,判断系统的稳定性。七、离散系统的稳定性1.既是离散系统,又是因果系统,其稳定性的判断方法:稳定:H(z)的所有极点全部位于单位圆内,则系统稳定。临界稳定:H(s)的一阶极点(实极点或共轭复极点)位于单位圆上,单位圆外无极点,则系统为临界稳定。不稳定:H(s)只要有一个极点位于单位圆外,或在单位圆上有重极点,则系统不稳定。例题1:设有差分方程表示的系统试求系统函数H(z),并讨论系统的稳定性。信号与系统期末试题(B)一、 填空题(20分,每空2分)1.描述线性非时变连续系统的数学模型是_。2.离散系统的激励与响应都是_,它们是_的函数(或称序列)。3.确定信号是指能够以_表示的信号,在其定义域内任意时刻都有_。4.请写出“LTI”的英文全称_。5.若信号f(t)的FT存在,则它满足绝对可积的条件是_。6.自相关函数是描述随机信号X(t)在_取值之间的相关程度。7.设X(t)为平稳的连续随机信号,其自相关函数是_,其功率密度谱是_。二、 选择题(20分,每小题2分)1连续信号与的卷积,即 (a) (b) (c) (d) 2连续信号与的乘积,即(a) (b) (c) (d) 3线性时不变系统的数学模型是 (a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4若收敛坐标落于原点,S平面有半平面为收敛区,则 (a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号 (d) 该信号的幅度既不增长也不衰减而等于稳定值,或虽时间成比例增长的信号5若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z变换 (d) 希尔伯特变换6无失真传输的条件是 (a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线 (d) 幅频特性是一通过原点的直线,相位特性等于常数7描述离散时间系统的数学模型是 (a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程8若Z变换的收敛域是 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列9若以信号流图建立连续时间系统的状态方程,则应选 (a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量10若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对三、简答题(10分,没小题5分)1 一般来讲信号分析既可从时域分析也可从变换域分析,试陈述它们的优缺点。2 试陈述对平稳随机信号的分析时,在时域和频域中分别研究那些特征量并说明为什么。四、 计算题(40分,每题10分)1. 求图1所示梯形信号f(t)的频谱函数。f(t)At-b-aba0图1 2.某线性时不变离散系统,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论