高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析).doc_第1页
高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析).doc_第2页
高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析).doc_第3页
高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析).doc_第4页
高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析).doc_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2016年高考数学联考模拟试题分项版 专题4 数列与不等式 文(含解析)1.【2016高考山东文数】若变量x,y满足则x2+y2的最大值是( )(a)4(b)9(c)10(d)12【答案】c【解析】考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.2.【2016高考浙江文数】若平面区域 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )a. b. c. d. 【答案】b【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据可行域的特点确定取得最值的最优解,代入计算画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误3.【2016高考新课标2文数】若x,y满足约束条件,则的最小值为_【答案】【解析】试题分析:由得,点,由得,点,由得,点,分别将,代入得:,所以的最小值为考点: 简单的线性规划.【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值4.2016高考新课标文数若满足约束条件 则的最大值为_.【答案】【解析】考点:简单的线性规划问题【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果5.【2016高考新课标1文数】某高科技企业生产产品a和产品b需要甲、乙两种新型材料.生产一件产品a需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品b需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品a的利润为2100元,生产一件产品b的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品a、产品b的利润之和的最大值为 元.【答案】【解析】考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.6.【2016高考上海文科】若满足 则的最大值为_.【答案】考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.7.【2016高考上海文科】设,则不等式的解集为_.【答案】【解析】试题分析:由题意得:,即,故解集为考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.8.【2016高考天津文数】(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要a,b,c三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有a种原料200吨,b种原料360吨,c种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.()用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;()问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【答案】()详见解析()生产甲种肥料车皮,乙种肥料车皮时利润最大,且最大利润为万元【解析】考点:线性规划【名师点睛】解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答而求线性规划最值问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法.数列1.【2016高考浙江文数】如图,点列分别在某锐角的两边上,且,.(pq表示点p与q不重合)若,为的面积,则( )a.是等差数列 b.是等差数列 c.是等差数列 d.是等差数列【答案】a【解析】考点:新定义题、三角形面积公式.【思路点睛】先求出的高,再求出和的面积和,进而根据等差数列的定义可得为定值,即可得是等差数列2.【2016高考上海文科】无穷数列由k个不同的数组成,为的前n项和.若对任意,则k的最大值为_.【答案】4【解析】试题分析:当时,或;当时,若,则,于是,若,则,于是.从而存在,当时,.其中数列 :满足条件,所以.考点:数列的求和.【名师点睛】从研究与的关系入手,推断数列的构成特点,解题时应特别注意“数列由k个不同的数组成”的不同和“k的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.3.【2016高考新课标1文数】(本题满分12分)已知是公差为3的等差数列,数列满足,.(i)求的通项公式;(ii)求的前n项和.【答案】(i)(ii)【解析】(ii)由(i)和 ,得,因此是首项为1,公比为的等比数列.记的前项和为,则考点:等差数列与等比数列【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.4.【2016高考新课标2文数】等差数列中,.()求的通项公式;() 设,求数列的前10项和,其中表示不超过的最大整数,如0.9=0,2.6=2.【答案】();()24.【解析】考点:等差数列的性质 ,数列的求和.【名师点睛】求解本题会出现以下错误:对“表示不超过的最大整数”理解出错;5.2016高考新课标文数已知各项都为正数的数列满足,.(i)求;(ii)求的通项公式.【答案】();()【解析】考点:1、数列的递推公式;2、等比数列的通项公式【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明(常数);(2)中项法,即证明根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解6.【2016高考北京文数】(本小题13分)已知是等差数列,是等差数列,且,.(1)求的通项公式;(2)设,求数列的前n项和.【答案】(1)(,);(2)【解析】试题分析:()求出等比数列的公比,求出,的值,根据等差数列的通项公式求解;()根据等差数列和等比数列的前项和公式求数列的前项和.试题解析:(i)等比数列的公比,所以,设等差数列的公差为因为,所以,即所以(,)考点:等差、等比数列的通项公式和前n项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和sn可视为数列sn的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,或)等.7.【2016高考山东文数】(本小题满分12分)已知数列的前n项和,是等差数列,且.(i)求数列的通项公式; (ii)令.求数列的前n项和. 【答案】();()【解析】试题分析:()依题意建立的方程组,即得.考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.8.【2016高考天津文数】(本小题满分13分)已知是等比数列,前n项和为,且.()求的通项公式;()若对任意的是和的等差中项,求数列的前2n项和.【答案】()()【解析】考点:等差数列、等比数列及其前项和【名师点睛】分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组求和法求an的前n项和(2)通项公式为an的数列,其中数列bn,cn是等比数列或等差数列,可采用分组求和法求和9.【2016高考浙江文数】(本题满分15分)设数列的前项和为.已知=4,=2+1,.(i)求通项公式;(ii)求数列的前项和.【答案】(i);(ii).【解析】考点:等差、等比数列的基础知识.【方法点睛】数列求和的常用方法:(1)错位相减法:形如数列的求和,其中是等差数列,是等比数列;(2)裂项法:形如数列或的求和,其中,是关于的一次函数;(3)分组法:数列的通项公式可分解为几个容易求和的部分10.【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列与,记a=|=,b=|=,若同时满足条件:,均单调递增;且,则称与是无穷互补数列.(1)若=,=,判断与是否为无穷互补数列,并说明理由;(2)若=且与是无穷互补数列,求数列的前16项的和;(3)若与是无穷互补数列,为等差数列且=36,求与得通项公式.【答案】(1)与不是无穷互补数列;(2);(3),【解析】考点: 1.等差数列的通项公式;2.数列的求和;3.反证法.【名师点睛】本题对考生逻辑推理能力要求较高,是一道难题.解答此类题目,熟练掌握等差数列、等比数列及反证法是基础,灵活应用已知条件进行推理是关键.本题易错有以下原因,一是不得法,二是复杂式子的变形能力不足,三是对“新定义”不理解,导致错漏百出.本题能较好的考查考生的逻辑思维及推理能力、运算求解能力、分析问题解决问题的能力、阅读理解能力等.11.【2016高考四川文科】(本小题满分12分)已知数列 的首项为1, 为数列的前n项和, ,其中q0, .()若 成等差数列,求的通项公式;()设双曲线 的离心率为 ,且 ,求.【答案】();().【解析】,考点:数列的通项公式、双曲线的离心率、等比数列的求和公式【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第()问中,已知的是的递推式,在与的关系式中,经常用代换(),然后两式相减,可得的递推式,利用这种方法解题时要注意;在第()问中,按题意步步为营,认真计算不需要多少解题技巧,符合文科生的特点第二部分 2016优质模拟试题1.【2016辽宁大连高三双基测试卷】九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )(a)钱 (b)钱 (c)钱 (d)钱【答案】b【解析】设所成等差数列的首项为,公差为,则依题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论