B05选修222.3 数学归纳法2课时_第1页
B05选修222.3 数学归纳法2课时_第2页
B05选修222.3 数学归纳法2课时_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一课时 2.3 数学归纳法(一)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:一、复习准备:1. 问题1: 在数列中,先算出a2,a3,a4的值,再推测通项an的公式. (过程:,由此得到:)2. 问题2:,当nN时,是否都为质数?过程:=41,=43,=47,=53,=61,=71,=83,=97,=113,=131,=151, =1 601但是=1 681=412是合数3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.二、讲授新课:1. 教学数学归纳法概念: 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法. 讨论:问题1中,如果n=k猜想成立,那么n=k+1是否成立?对所有的正整数n是否成立? 提出数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(kn0, kN*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立. 原因:在基础和递推关系都成立时,可以递推出对所有不小于n0的正整数n0+1,n0+2,命题都成立. 关键:从假设n=k成立,证得n=k+1成立. 2. 教学例题: 出示例1:.分析:第1步如何写?n=k的假设如何写? 待证的目标式是什么?如何从假设出发?小结:证n=k+1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. 练习:求证:. 出示例2:设a+ (nN*),求证:a(n1).关键:a(k1)+(k+1)+n(n1) 3. 小结:书写时必须明确写出两个步骤与一个结论,注意“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n=k到n=k+1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1. 练习:教材108 练习1、2题 2. 作业:教材108 B组1、2、3题.第二课时 2.3 数学归纳法(二)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:经历试值、猜想、归纳、证明的过程来解决问题.教学过程:一、复习准备:1. 练习:已知,猜想的表达式,并给出证明? 过程:试值, 猜想 用数学归纳法证明.2. 提问:数学归纳法的基本步骤?二、讲授新课:1. 教学例题: 出示例1:已知数列,猜想的表达式,并证明. 分析:如何进行猜想?(试值猜想) 学生练习用数学归纳法证明 讨论:如何直接求此题的? (裂项相消法) 小结:探索性问题的解决过程(试值猜想、归纳证明) 练习:是否存在常数a、b、c使得等式对一切自然数n都成立,试证明你的结论. 解题要点:试值n=1,2,3, 猜想a、b、c 数学归纳法证明2. 练习: 已知 ,考察;之后,归纳出对也成立的类似不等式,并证明你的结论. (89年全国理科高考题)是否存在常数a、b、c,使得等式 (答案:a=3,b=11,c=10)1对一切自然数n都成立?并证明你的结论3. 小结:探索性问题的解决模式为“一试验二归纳三猜想四证明”.三、巩固练习:1. 平面内有n个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n个圆将平面分成f(n)=n2n+2个部分.2. 是否存在正整数m,使得f(n)=(2n+7)3n+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由. (答案:m=36)3. 试证明面值为3分和5分的邮票可支付任何的邮资. 证明:(1)当时,由可知命题成立;(2)假设时,命题成立. 则当时,由(1)及归纳假设,显然时成立.根据(1)和(2),可知命题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论