



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集合的概念与运算1集合与元素(1)集合元素的三个特征:确定性、互异性、无序性(2)元素与集合的关系是属于或不属于关系,用符号或表示(3)集合的表示法:列举法、描述法、图示法、区间法(4)常用数集:自然数集N;正整数集N*(或N);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集2集合间的基本关系(1)子集:对任意的xA,都有xB,则AB(或BA)(2)真子集:若AB,且AB,则AB(或BA)(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集即A,B(B)(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n1个(5)集合相等:若AB,且BA,则AB.3集合的基本运算(1)并集:ABx|xA,或xB(2)交集:ABx|xA,且xB(3)补集:UAx|xU,且xA(4)集合的运算性质ABABA,ABAAB;AAA,A;AAA,AA;AUA,AUAU,U(UA)A.函数及其表示1函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:AB为从集合A到集合B的一个函数,记作:yf(x),xA.(2)函数的定义域、值域在函数yf(x),xA中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合f(x)|xA叫值域值域是集合B的子集(3)函数的三要素:定义域、值域和对应关系(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据2函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法3映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射注:求复合函数yf(t),tq(x)的定义域的方法:若yf(t)的定义域为(a,b),则解不等式得aq(x)b即可求出yf(q(x)的定义域;若yf(g(x)的定义域为(a,b),则求出g(x)的值域即为f(t)的定义域函数的单调性、最值、奇偶性1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数当x1x2时,都有f(x1)f(x2),那么就说函数f (x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间注:1、两种形式设任意x1,x2a,b且x1x2,那么0f(x)在a,b上是增函数;0f(x)在a,b上是减函数(x1x2)f(x1)f(x2)0f(x)在a,b上是增函数;(x1x2)f(x1)f(x2)0f(x)在a,b上是减函数2、复合函数法: 同增异减3、常见函数的单调性: 一次函数 反比例函数 二次函数2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件.对于任意xI,都有f(x)M;对于任意xI,都有f(x)M;存在x0I,使得f(x0)M存在x0I,使得f(x0)M.结论M为最大值M为最小值31奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做奇函数奇函数的图象关于原点对称;偶函数的图象关于y轴对称32奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(2)在公共定义域内两个奇函数的和是奇函数,两个奇函数的积是偶函数;两个偶函数的和、积都是偶函数;一个奇函数,一个偶函数的积是奇函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国男士针织服装行业发展研究与产业战略规划分析评估报告
- 2025至2030中国甲型流感病毒H3N2亚型感染药物行业产业运行态势及投资规划深度研究报告
- 2025至2030中国珠宝租赁行业市场深度研究及发展前景投资可行性分析报告
- 心理健康在班级管理中的重要性探讨
- 政策效果评估中的数据挖掘与处理技术
- 智慧教室在特殊教育中的应用探索
- 智慧城市灯光秀创新与技术的结合
- 设备维修知识培训
- 教育与技术的深度结合下的激励与薪资新思考
- 新兴技术在企业培训中的运用及效果评估报告
- 2025届山东烟台中考历史真题试卷【含答案】
- 志愿者心理调适培训(改)
- 个人信息保护与安全培训
- 运输公司交通安全培训课件
- 《康复治疗学专业毕业实习》教学大纲
- 北师大版7年级数学下册期末真题专项练习 03 计算题(含答案)
- 职业卫生管理制度和操作规程标准版
- 小学信息技术四年级下册教案(全册)
- 河道保洁船管理制度
- 基于响应面法的工艺参数优化研究
- 【增程式电动拖拉机驱动系统总体设计方案计算1900字】
评论
0/150
提交评论