




已阅读5页,还剩101页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计假设检验 假设检验 第一节 假设检验概述第二节 总体平均数的假设检验 Z T 第三节 总体比率的假设检验 P 第四节 总体方差的假设检验 卡方 F 第一节假设检验概述 1 假设检验的基本思想2 假设检验的步骤3 两类错误和假设检验的规则 RonaldAylmerFisher 英国著名的统计学家 遗传学家 现代数理统计的奠基人之一 他在抽样分布理论 相关回归分析 多元统计分析 最大似然估计理论 方差分析和假设检验有很多的建树 女士品茶 20世纪20年代后期在英国剑桥一个夏日的下午 一群大学的绅士和他们的夫人以及来访者 正围坐在户外的桌旁享用下午的奶茶 奶茶一般是由牛奶和茶混合而成的 调制时候可以先倒茶后倒牛奶 也可以先倒牛奶后倒茶 这时候 一名女士说她能区分这两种不同做法的调制出来的奶茶 那么如何检验这位女士的说法 为此Fisher进行了研究 从而提出了假设检验的思想 1 推广素质教育以后 教学效果是不是有所提高 教育统计 2 某种新胃药是否比以前更有效 卫生统计 3 醉酒驾车认定为刑事犯罪后是否交通事故会减少 司法统计 4 如何检测某批种子的发芽率 农业统计 5 海关工作人员如何判定某批产品能够通关 海关统计 6 红楼梦 后40回作者的鉴定 文学统计 7 民间借贷的利率为多少 金融统计 8 兴奋剂检测 体育统计 假设检验的应用 1 假设检验的基本思想为研究某山区的成年男子的脉搏均数是否高于一般成年男子脉搏均数 某医生在一山区随机抽查了25名健康成年男子 得其脉搏均数x为74 2次 分 标准差为6 0次 分 根据大量调查已知一般健康成年男子脉搏均数为72次 分 能否据此认为该山区成年的脉搏均数 高于一般成年男子的脉搏均数 0 问题1 造成这25名男子脉搏均数高于一般男子的原因是什么 问题2 怎样判断以上哪个原因是成立的 若x与 0接近 其差别可用抽样误差解释 x来自于 0 若x与 0相差甚远 其差别不宜用抽样误差解释 则怀疑x不属于 0 由资料已知样本均数与总体均数不等 原因有二 1 两者非同一总体 即两者差异由地理气候等因素造成 也就是可以说高山成年人的脉搏比一般人的要高 2 两者为同一总体 即两者差异由抽样误差造成 检验如下假设 原假设 高山成年人脉搏与一般人的脉搏没有差异 0备择假设 高山成年人脉搏与一般人的脉搏有差异 0 假设检验的基本概念 概念事先对总体参数或分布形式作出某种假设然后利用样本信息来以一定的概率判断原假设是否成立参数检验和非参数检验 第8章的内容 作用一般是对有差异的数据进行检验 判断差异是否显著 概率 如果通过了检验 不能拒绝原假设 说明没有显著差异 那么这种差异是由抽样造成的如果不能通过检验 则拒绝原假设 说明有显著差异 这种差异是由系统误差造成的 证伪不能存真 第一节假设检验概述 1 假设检验的基本思想2 假设检验的步骤3 两类错误和假设检验的规则 二 假设检验的步骤 1 根据具体的问题 建立原假设和备择假设2 构造一个合适的统计量 计算其抽样分布 均值检验 3 给定显著水平 和确定临界值 显著水平 通常取0 1 0 05或0 01 在确定了显著水平后 根据统计量的分布就可以确定找出接受区域和拒绝区域的临界值 4 根据样本的值计算统计量的数值并作出决策 如果统计量的值落在拒绝域中 那么就没有通过检验 说明有显著差异 拒绝原假设 如果统计量的值落在接受域中 通过了假设检验 说明这种差异是由于抽样造成 这个样本不能拒绝原假设 1 原假设与备择假设 原假设 nullhypothesis 一般研究者想收集证据予以反对的假设 表示为H0备择假设 alternativehypothesis 一般研究者想收集证据予以支持的假设 表示为H1由于假设检验中只有在小概率事件发生的情况下才拒绝原假设 因此在假设检验过程中是保护原假设的 有三种形式 1 双侧检验H0 0 H1 0 不等 有差异 2 左侧检验H0 0 H1 0 提高 增加 采用哪种形式要根据实际问题 某种饮料的易拉罐瓶的标准容量为335毫升 为对生产过程进行控制 质量监测人员定期对某个分厂进行检查 确定这个分厂生产的易拉罐是否符合标准要求 如果易拉罐的平均容量大于或小于335毫升 则表明生产过程不正常 试陈述用来检验生产过程是否正常的原假设和备择假设 解 研究者想收集证据予以证明的假设应该是 生产过程不正常 建立的原假设和备择假设为H0 335mlH1 335ml 消费者协会接到消费者投诉 指控品牌纸包装饮料存在容量不足 有欺骗消费者之嫌 包装上标明的容量为250毫升 消费者协会从市场上随机抽取50盒该品牌纸包装饮品进行假设检验 试陈述此假设检验中的原假设和备择假设 解 消费者协会的意图是倾向于证实饮料厂包装饮料小于250ml 建立的原假设和备择假设为H0 250mlH1 250ml 例 一家研究机构估计 某城市中家庭购买有价证券的比率超过30 为验证这一估计是否正确 该研究机构随机抽取了一个50户组成的样本进行检验 试陈述此问题中的原假设和备择假设 解 研究者想收集证据予以支持的假设是 城市中家庭购买有价证券的比率超过30 建立的原假设和备择假设为H0 30 H1 30 根据样本观测结果计算得到的 并据以对原假设和备择假设作出决策的某个样本统计量 2 设计检验统计量 2 标准化的检验统计量 非正态小样本情形不讨论 3 拒绝域和接受域的确定 双侧检验 抽样分布 0 临界值 临界值 a 2 a 2 样本统计量 拒绝H0 拒绝H0 1 置信水平 拒绝域 接受域 拒绝域 4 判断规则从概率的角度来讲 如果统计量取值的概率小于或者等于显著水平 表明小概率事件发生了 因此拒绝原假设 反之 不能拒绝原假设 p值 如果统计量的值正好落在拒绝域之内 那么拒绝原假设 如果落在接受域之内 则不能拒绝原假设 如果正好等于临界值 也要拒绝原假设 例1 一种罐装饮料采用自动生产线生产 每罐的容量是255ml 标准差为5ml 服从正态分布 为检验每罐容量是否符合要求 质检人员在某天生产的饮料中随机抽取了16罐进行检验 测得每罐平均容量为257 2ml 取显著性水平 0 05 检验该天生产的饮料容量是否符合标准要求 双侧检验 H0 255H1 255 0 05n 16临界值 Zc 检验统计量 决策 不能拒绝H0 结论 样本提供的证据表明 该天生产的饮料与标准没有显著差异 样本均值与标准的差异是因为随机因素所引起的 总体 某种假设 抽样 样本 观察结果 检验 不能拒绝原假设 拒绝原假设 小概率事件未发生 小概率事件发生 3 做法采用逻辑上的反证法依据统计上的小概率原理 核心是构造小概率事件 假设检验中的反证法与数学中的反证法的比较 小概率事件在一次实验中不可能发生的事件 如果发生了 那么就可以拒绝原来的假设 泰力布 等待黑天鹅的人 显著性水平和拒绝域 单侧检验 拒绝域 接受域 显著性水平和拒绝域 左侧检验 显著性水平和拒绝域 左侧检验 观察到的样本统计量 例2 一种罐装饮料采用自动生产线生产 每罐的容量是255ml 标准差为5ml 服从正态分布 换了一批工人后 质检人员在某天生产的饮料中随机抽取了16罐进行检验 测得每罐平均容量为257 2ml 取显著性水平 0 05 检验该天生产的饮料容量是否增加了 右侧检验 H0 255H1 255 决策 拒绝H0 结论 样本提供的证据表明 该天生产的饮料与标准有显著差异 可以认为换工人后容量增加了 显著性水平和拒绝域 右侧检验 显著性水平和拒绝域 右侧检验 第一节假设检验概述 1 假设检验的基本思想2 假设检验的步骤3 两类错误和假设检验的规则 三 两类错误和假设检验的规则 1 第 类错误 弃真错误 原假设为真时拒绝原假设第 类错误的概率记为 被称为显著性水平2 第 类错误 取伪错误 原假设为假时未拒绝原假设第 类错误的概率记为 Beta H0 无罪 假设检验中的两类错误 假设检验就好像一场审判过程 统计检验过程 H0 药品为真药 假设检验中的两类错误之间的关系 宁可错杀三千 不可放过一个 H0 某次面试为好机会 错误和 错误的关系 你不能同时减少两类错误 只能增加样本容量 和 的关系就像翘翘板 小 就大 大 就小 四 置信区间与假设检验之间的关系1 根据置信度1 构造置信区间 如果统计量落在置信区间中 那么接受原假设 如果不在置信区间中 那么拒绝原假设 2 根据显著水平 可以构建置信度为1 的置信区间 一个总体的检验 第二节总体均值的检验一 单个总体均值的检验 ZT 二 两个总体均值检验 等方差 异方差 三 两个非正态总体均值之差的检验 成对检验 一 单个正态总体均值的检验 确定检验统计量的因素 1 样本容量的大小2 总体分布形状3 总体方差是否已知主要情形 6种 正态总体 方差未知 且为小样本 1种 正态总体 方差已知 小样本 1种 大样本 不论总体是否正态 不论方差是否已知 4种 三种假设检验的形式 双侧 左侧和右侧 一 总体平均数的检验 小样本 正态 方差已知 1 假定条件总体服从正态分布小样本 n 30 但是总体方差已知检验统计量 某机床厂加工一种零件 根据经验知道 该厂加工零件的椭圆度近似服从正态分布 其总体均值为 0 0 081mm 总体标准差为 0 025 今换一种新机床进行加工 抽取n 200个零件进行检验 得到的椭圆度为0 076mm 试问新机床加工零件的椭圆度的均值与以前有无显著差异 0 05 H0 0 081 H1 0 081 0 05 n 200临界值 s 双侧检验 检验统计量 决策 拒绝H0 结论 有证据表明新机床加工的零件的椭圆度与以前有显著差异 均值的单侧Z检验 根据过去大量资料 某厂生产的灯泡的使用寿命服从正态分布N 1020 1002 现从最近生产的一批产品中随机抽取16只 测得样本平均寿命为1080小时 试在0 05的显著性水平下判断这批产品的使用寿命是否有显著提高 0 05 右侧检验 H0 1020H1 1020 决策 在0 05的水平上拒绝H0 结论 样本提供的证据表明 该天生产的饮料与标准有显著差异 可以认为试用寿命提高了 总体均值的检验 z检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 粘贴函数 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 NORMSDIST 然后确定第3步 将z的绝对值2 4录入 得到的函数值为0 9918P值 1 0 9918 0 0082P值小于 故拒绝H0 总体均值的检验 z检验 P值的图示 例3 一种罐装饮料采用自动生产线生产 每罐的容量是255ml 标准差为5ml 服从正态分布 换了一批工人后 质检人员在某天生产的饮料中随机抽取了16罐进行检验 测得每罐平均容量为252 8ml 取显著性水平 0 05 检验该天生产的饮料容量是否减少了 左侧检验 H0 255H1 255 决策 在0 05水平上拒绝H0 结论 样本提供的证据表明 该天生产的饮料与标准有显著差异 可以认为换工人后容量减少了 总体均值的检验 z检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 粘贴函数 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 NORMSDIST 然后确定第3步 将z的绝对值 1 76录入 得到的函数值为0 039204P值 0 039204P值小于 故拒绝H0 总体均值的检验 z检验 P值的图示 总体均值的检验规则 正态 小样本 方差已知 练习一 二 总体平均数检验 小样本 正态 方差未知 1 假定条件总体服从正态分布小样本 n 30 但总体方差未知检验统计量 总体均值的检验规则 正态 方差未知 小样本情形 例1 某机器制造的肥皂厚度规定为5cm 假设肥皂厚度服从正态分布 今欲了解机器性能是否良好 取16块肥皂为样本 测得平均厚度为5 2cm 标准差为0 4cm 问在显著水平为0 05的水平下 机器是否为良好 双侧检验 H0 5H1 5 决策 不能拒绝H0 结论 认为该机器还是良好的 没有充分的理由拒绝原假设 例2 某机器制造的肥皂厚度规定为5cm 假设肥皂厚度服从正态分布 今欲了解机器性能是否良好 取16块肥皂为样本 测得平均厚度为5 2cm 标准差为0 4cm 问在显著水平为0 05的水平下 肥皂的平均厚度是否偏高 右侧检验 H0 5H1 5 决策 拒绝H0 结论 认为肥皂的平均厚度偏高 P值 0 031972 5 拒绝 一种汽车配件的平均长度要求为12cm 高于或低于该标准均被认为是不合格的 汽车生产企业在购进配件时 通常是经过招标 然后对中标的配件提供商提供的样品进行检验 以决定是否购进 现对一个配件提供商提供的10个样本进行了检验 假定该供货商生产的配件长度服从正态分布 在0 05的显著性水平下 检验该供货商提供的配件是否符合要求 双侧检验 H0 12H1 12 0 05 df 10 1 9 决策 不拒绝H0 结论 该供货商提供的零件符合要求 总体均值的检验 t检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 粘贴函数 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 TDIST 然后确定第3步 在出现对话框的X栏中输入计算出的t的绝对值0 7035 在Deg freedom 自由度 栏中输入本例的自由度9 在Tails栏中输入2 表明是双侧检验 如果是单测检验则在该栏输入1 第4步 P值 0 499537958P值 0 05 故不拒绝H0 三 总体均值的检验 大样本 1 假定条件正态总体或非正态总体大样本 n 30 使用z检验统计量 2已知 2未知 总体均值的检验规则 大样本情形 某大学规定学生每天参加体育锻炼的时间为25分钟 现学校为了调查学生是否达到锻炼标准 从该校学生中随机抽取100人 调查到他们平均每天参加体育锻炼的时间为24分钟 标准为5分钟 试以5 的显著水平检验该校学生平均每天的锻炼时间是否达到规定 右侧检验 H0 25 H1 25 0 05 n 100 决策 拒绝H0 结论 样本提供的证据表明 学生的锻炼时间没有达到规定 总体均值的检验 z检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 粘贴函数 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 NORMSDIST 然后确定第3步 将z的绝对值2录入 得到的函数值为0 9925P值 1 0 9925 0 0075P值远远小于 故拒绝H0 例 一种罐装饮料采用自动生产线生产 每罐的容量是255ml 标准差为5ml 为检验每罐容量是否符合要求 质检人员在某天生产的饮料中随机抽取了40罐进行检验 测得每罐平均容量为255 8ml 取显著性水平 0 05 检验该天生产的饮料容量是否符合标准要求 双侧检验 H0 255 H1 255 0 05 n 40 决策 不拒绝H0 结论 样本提供的证据表明 该天生产的饮料符合标准要求 总体均值的检验 z检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 粘贴函数 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 NORMSDIST 然后确定第3步 将z的绝对值1 01录入 得到的函数值为0 8437P值 2 0 8437 1 0 6874P值远远大于 故不能拒绝H0 总体均值的检验 大样本 例 一种机床加工的零件尺寸绝对平均误差为1 35mm 生产厂家现采用一种新的机床进行加工以期进一步降低误差 为检验新机床加工的零件平均误差与旧机床相比是否有显著降低 从某天生产的零件中随机抽取50个进行检验 利用这些样本数据 检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低 0 01 左侧检验 总体均值的检验 大样本 例题分析 H0 1 35H1 1 35 0 01n 50临界值 c 检验统计量 决策 拒绝H0 结论 新机床加工的零件尺寸的平均误差与旧机床相比有显著降低 总体均值的检验 z检验 P值的计算与应用 第1步 进入Excel表格界面 直接点击 f x 第2步 在函数分类中点击 统计 并在函数名的菜单下选择 ZTEST 然后确定第3步 在所出现的对话框Array框中 输入原始数据所在区域 在X后输入参数的某一假定值 这里为1 35 在Sigma后输入已知的总体标准差 若未总体标准差未知则可忽略不填 系统将自动使用样本标准差代替 第4步 用1减去得到的函数值0 995421023即为P值P值 1 0 995421023 0 004579P值 0 01 拒绝H0 总体均值的检验 z检验 P值的图示 总体均值的检验 2未知 例题分析 例 某一小麦品种的平均产量为5200kg hm2 一家研究机构对小麦品种进行了改良以期提高产量 为检验改良后的新品种产量是否有显著提高 随机抽取了36个地块进行试种 得到的样本平均产量为5275kg hm2 标准差为120 hm2 试检验改良后的新品种产量是否有显著提高 0 05 右侧检验 总体均值的检验 2未知 例题分析 H0 5200H1 5200 0 05n 36临界值 c 检验统计量 拒绝H0 P 0 000088 0 05 改良后的新品种产量有显著提高 决策 结论 总体均值的检验 z检验 P值的图示 二 两个总体均值平均数之差的检验 检验的类型 1 双侧检验H0 1 2 D H1 1 2 D 2 左侧检验H0 1 2 D H1 1 2D如果D 0 那么检验类型简化为 1 双侧检验H0 1 2 H1 1 2 不等 有差异 2 左侧检验H0 1 2 H1 1 2 高 两个总体均值之差的假设检验 假定条件 两个总体之间是独立的 情形 一 两个总体都服从正态分布 1 2 已知情形 三 若不是正态分布 两者都是大样本 n1 30和n2 30 可以用正态分布来近似 2 使用正态分布统计量z 方差已知方差未知用样本方差替代 两个总体均值之差的检验规则 正态总体方差已知或者大样本情形 例 某公司对男女职员的平均小时工资进行了调查 独立抽取了具有同类工作经验的男女职员的两个随机样本 并记录下两个样本的均值 方差等资料如右表 在显著性水平为0 05的条件下 能否认为男性职员与女性职员的平均小时工资存在显著差异 H0 1 2 0H1 1 2 0 结论 拒绝H0 该公司男女职员的平均小时工资之间存在显著差异 性别是影响工资的一个因素 二 正态总体方差未知但 12 22 假定条件两个独立的小样本两个总体都是正态分布 12 22未知但相等 即 12 22检验统计量 其中 自由度 两个总体均值之差的检验规则 正态 方差未知 小样本情形 例 甲 乙两台机床同时加工某种同类型的零件 已知两台机床加工的零件直径 单位 cm 分别服从正态分布 并且有 12 22 为比较两台机床的加工精度有无显著差异 分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件 通过测量得到如下数据 在 0 05的显著性水平下 样本数据是否提供证据支持 两台机床加工的零件直径不一致 的看法 H0 m1 m2 0H1 m1 m2 0 不能拒绝原假设 因此没有理由认为甲 乙两台机床加工的零件直径有显著差异 两个总体均值之差的检验 用Excel进行检验 第1步 将原始数据输入到Excel工作表格中第2步 选择 工具 下拉菜单并选择 数据分析 选项第3步 在 数据分析 对话框中选择 t 检验 双样本等方差假设 第4步 当对话框出现后在 变量1的区域 方框中输入第1个样本的数据区域在 变量2的区域 方框中输入第2个样本的数据区域在 假设平均差 方框中输入假定的总体均值之差在 方框中输入给定的显著性水平 本例为0 05 在 输出选项 选择计算结果的输出位置 然后 确定 例 为检验两种方法组装产品所需时间的差异 分别对两种不同的组装方法各随机安排12个工人 每个工人组装一件产品所需的时间 分钟 下如表 假定两种方法组装产品的时间服从正态分布 但方差未知且不相等 取显著性水平0 05 能否认为方法1组装产品的平均数量明显地高于方法2 四 12 22未知且不相等 12 22 假定条件两个总体都是正态分布 12 22未知且不相等 即 12 22样本容量不相等 即n1 n2检验统计量 自由度 参见 李勇 统计学导论 例 为检验两种方法组装产品所需时间的差异 分别对两种不同的组装方法各随机安排12个工人 每个工人组装一件产品所需的时间 分钟 下如表 假定两种方法组装产品的时间服从正态分布 但方差未知且不相等 取显著性水平0 05 能否认为方法1组装产品的平均数量明显地高于方法2 为比较甲乙两台机床的加工精度是否相等 分别独立抽取了甲机床加工的10个零件和乙机床加工的12个零件的直径 测得加工零件的直径数据后 利用EXCEL数据工具输出的结果如下 假设总体方差相等 显著水平为0 05 1 请建立原假设和备择假设 是否有证据说明甲乙两机床是否存在差异 请说明理由2 如果显著水平为0 01 那么 1 中的结论是否有变化 为什么 3 在以上的检验中 还需要什么假设 练习 第三节 总体比率检验 假定条件np 5 nq 5 样本比率可用正态分布来近似 大样本 检验的z统计量 0为假设的总体比率 总体比率的检验规则 总体比率的检验 例 一种以休闲和娱乐为主题的杂志 声称其读者群中有80 为女性 为验证这一说法是否属实 某研究部门抽取了由200人组成的一个随机样本 发现有146个女性经常阅读该杂志 分别取显著性水平0 05和0 01 检验该杂志读者群中女性的比率是否为80 它们的值各是多少 双侧检验 H0 80 H1 80 0 05 拒绝H0 P 0 013328 0 05 该杂志的说法并不属实 H0 80 H1 80 0 01 不拒绝H0 P 0 013328 0 01 该杂志的说法属实 1 假定条件两个总体都服从二项分布可以用正态分布来近似检验统计量检验H0 1 2 0检验H0 1 2 d0 二 两个总体比率之差的检验 两个总体比率之差的检验规则 两个总体比率之差的检验 例题分析 例 一所大学准备采取一项学生在宿舍上网收费的措施 为了解男女学生对这一措施的看法是否存在差异 分别抽取了200名男学生和200名女学生进行调查 其中的一个问题是 你是否赞成采取上网收费的措施 其中男学生表示赞成的比率为27 女学生表示赞成的比率为35 调查者认为 男学生中表示赞成的比率显著低于女学生 取显著性水平 0 05 样本提供的证据是否支持调查者的看法 两个总体比率之差的检验 例题分析 H0 1 2 0H1 1 2 0 0 05n1 200 n2 200临界值 c 检验统计量 决策 结论 拒绝H0 P 0 041837 0 05 样本提供的证据支持调查者的看法 两个总体比率之差的检验 例题分析 例 有两种方法生产同一种产品 方法1的生产成本较高而次品率较低 方法2的生产成本较低而次品率则较高 管理人员在选择生产方法时 决定对两种方法的次品率进行比较 如方法1比方法2的次品率低8 以上 则决定采用方法1 否则就采用方法2 管理人员从方法1生产的产品中随机抽取300个 发现有33个次品 从方法2生产的产品中也随机抽取300个 发现有84个次品 用显著性水平 0 01进行检验 说明管理人员应决定采用哪种方法进行生产 两个总体比率之差的检验 例题分析 H0 1 2 8 H1 1 2 8 0 01n1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中美术跨学科教学中的学生自主学习与合作学习
- 2025至2030年中国温度/湿度/振动三综合试验箱行业投资前景及策略咨询报告
- 2025至2030年中国水产养殖技术行业投资前景及策略咨询报告
- 2025至2030年中国橡胶防水油膏行业投资前景及策略咨询报告
- 水泥企业经营管理方案
- 高中体育与健康跨学科教学的现状与挑战分析
- 北师大版八年级数学下册试题分类练 2.6.1 一元一次不等式组的应用 (含解析)
- 中小学语文阅读教学评价工具的选择与应用
- 社区宣传垃圾分类活动总结
- 知危险会避险安全交通观后感
- KA-T 21-2024 模袋法尾矿堆坝技术规程
- 地铁动力配电及照明工程施工方案
- 外泌体美容培训课件
- 政务号短视频运营实践:摆脱壁垒搭建公众参与桥梁
- 环烯醚萜类成分分析
- GB/T 43602-2023物理气相沉积多层硬质涂层的成分、结构及性能评价
- 警察防诈知识讲座
- 《鼠小弟的生日》
- 博士研究生入学考试题《作物生理学》
- 发展汉语-初级读写-第一课-你好
- 管理演员管理制度
评论
0/150
提交评论