图像局部特证及其匹配的详细讲解_第1页
图像局部特证及其匹配的详细讲解_第2页
图像局部特证及其匹配的详细讲解_第3页
图像局部特证及其匹配的详细讲解_第4页
图像局部特证及其匹配的详细讲解_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MatchingwithInvariantFeatures Example BuildaPanorama M BrownandD G Lowe RecognisingPanoramas ICCV2003 Howdowebuildpanorama Weneedtomatch align images MatchingwithFeatures Detectfeaturepointsinbothimages MatchingwithFeatures DetectfeaturepointsinbothimagesFindcorrespondingpairs MatchingwithFeatures DetectfeaturepointsinbothimagesFindcorrespondingpairsUsethesepairstoalignimages MatchingwithFeatures Problem1 Detectthesamepointindependentlyinbothimages nochancetomatch Weneedarepeatabledetector MatchingwithFeatures Problem2 Foreachpointcorrectlyrecognizethecorrespondingone Weneedareliableanddistinctivedescriptor Moremotivation Featurepointsareusedalsofor Imagealignment homography fundamentalmatrix 3DreconstructionMotiontrackingObjectrecognitionIndexinganddatabaseretrievalRobotnavigation other Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant Anintroductoryexample Harriscornerdetector C Harris M Stephens ACombinedCornerandEdgeDetector 1988 TheBasicIdea WeshouldeasilyrecognizethepointbylookingthroughasmallwindowShiftingawindowinanydirectionshouldgivealargechangeinintensity HarrisDetector BasicIdea flat region nochangeinalldirections edge nochangealongtheedgedirection corner significantchangeinalldirections Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant HarrisDetector Mathematics Changeofintensityfortheshift u v HarrisDetector Mathematics Forsmallshifts u v wehaveabilinearapproximation whereMisa2 2matrixcomputedfromimagederivatives HarrisDetector Mathematics Intensitychangeinshiftingwindow eigenvalueanalysis 1 2 eigenvaluesofM directionoftheslowestchange directionofthefastestchange max 1 2 min 1 2 EllipseE u v const HarrisDetector Mathematics 1 2 Corner 1and 2arelarge 1 2 Eincreasesinalldirections 1and 2aresmall Eisalmostconstantinalldirections Edge 1 2 Edge 2 1 Flat region ClassificationofimagepointsusingeigenvaluesofM HarrisDetector Mathematics Measureofcornerresponse k empiricalconstant k 0 04 0 06 HarrisDetector Mathematics 1 2 Corner Edge Edge Flat RdependsonlyoneigenvaluesofMRislargeforacornerRisnegativewithlargemagnitudeforanedge R issmallforaflatregion R 0 R 0 R 0 R small HarrisDetector TheAlgorithm FindpointswithlargecornerresponsefunctionR R threshold TakethepointsoflocalmaximaofR HarrisDetector Workflow HarrisDetector Workflow ComputecornerresponseR HarrisDetector Workflow Findpointswithlargecornerresponse R threshold HarrisDetector Workflow TakeonlythepointsoflocalmaximaofR HarrisDetector Workflow HarrisDetector Summary Averageintensitychangeindirection u v canbeexpressedasabilinearform DescribeapointintermsofeigenvaluesofM measureofcornerresponseAgood corner pointshouldhavealargeintensitychangeinalldirections i e Rshouldbelargepositive Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant HarrisDetector SomeProperties Rotationinvariance Ellipserotatesbutitsshape i e eigenvalues remainsthesame CornerresponseRisinvarianttoimagerotation HarrisDetector SomeProperties Partialinvariancetoaffineintensitychange Onlyderivativesareused invariancetointensityshiftI I b HarrisDetector SomeProperties But non invarianttoimagescale Allpointswillbeclassifiedasedges Corner HarrisDetector SomeProperties QualityofHarrisdetectorfordifferentscalechanges Repeatabilityrate correspondences possiblecorrespondences C Schmidet al EvaluationofInterestPointDetectors IJCV2000 Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant Wewantto detectthesameinterestpointsregardlessofimagechanges ModelsofImageChange GeometryRotationSimilarity rotation uniformscale Affine scaledependentondirection validfor orthographiccamera locallyplanarobjectPhotometryAffineintensitychange I aI b Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant RotationInvariantDetection HarrisCornerDetector C Schmidet al EvaluationofInterestPointDetectors IJCV2000 Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant ScaleInvariantDetection Considerregions e g circles ofdifferentsizesaroundapointRegionsofcorrespondingsizeswilllookthesameinbothimages ScaleInvariantDetection Theproblem howdowechoosecorrespondingcirclesindependentlyineachimage ScaleInvariantDetection Solution Designafunctionontheregion circle whichis scaleinvariant thesameforcorrespondingregions eveniftheyareatdifferentscales Example averageintensity Forcorrespondingregions evenofdifferentsizes itwillbethesame Forapointinoneimage wecanconsideritasafunctionofregionsize circleradius ScaleInvariantDetection Commonapproach Takealocalmaximumofthisfunction Observation regionsize forwhichthemaximumisachieved shouldbeinvarianttoimagescale Important thisscaleinvariantregionsizeisfoundineachimageindependently ScaleInvariantDetection A good functionforscaledetection hasonestablesharppeak Forusualimages agoodfunctionwouldbeaonewhichrespondstocontrast sharplocalintensitychange ScaleInvariantDetection Functionsfordeterminingscale Kernels whereGaussian Note bothkernelsareinvarianttoscaleandrotation Laplacian DifferenceofGaussians ScaleInvariantDetection Comparetohumanvision eye sresponse ShimonUllman IntroductiontoComputerandHumanVisionCourse Fall2003 ScaleInvariantDetectors Harris Laplacian1Findlocalmaximumof Harriscornerdetectorinspace imagecoordinates Laplacianinscale 1K Mikolajczyk C Schmid IndexingBasedonScaleInvariantInterestPoints ICCV20012D Lowe DistinctiveImageFeaturesfromScale InvariantKeypoints AcceptedtoIJCV2004 ScaleInvariantDetectors K Mikolajczyk C Schmid IndexingBasedonScaleInvariantInterestPoints ICCV2001 Experimentalevaluationofdetectorsw r t scalechange Repeatabilityrate correspondences possiblecorrespondences ScaleInvariantDetection Summary Given twoimagesofthesamescenewithalargescaledifferencebetweenthemGoal findthesameinterestpointsindependentlyineachimageSolution searchformaximaofsuitablefunctionsinscaleandinspace overtheimage Methods Harris Laplacian Mikolajczyk Schmid maximizeLaplacianoverscale Harris measureofcornerresponseovertheimageSIFT Lowe maximizeDifferenceofGaussiansoverscaleandspace Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant AffineInvariantDetection Aboveweconsidered Similaritytransform rotation uniformscale Nowwegoonto Affinetransform rotation non uniformscale AffineInvariantDetection TakealocalintensityextremumasinitialpointGoalongeveryraystartingfromthispointandstopwhenextremumoffunctionfisreached T Tuytelaars L V Gool WideBaselineStereoMatchingBasedonLocal AffinelyInvariantRegions BMVC2000 Wewillobtainapproximatelycorrespondingregions Remark wesearchforscaleineverydirection AffineInvariantDetection Theregionsfoundmaynotexactlycorrespond soweapproximatethemwithellipses AffineInvariantDetection Covariancematrixofregionpointsdefinesanellipse Ellipses computedforcorrespondingregions alsocorrespond AffineInvariantDetection Algorithmsummary detectionofaffineinvariantregion StartfromalocalintensityextremumpointGoineverydirectionuntilthepointofextremumofsomefunctionfCurveconnectingthepointsistheregionboundaryComputegeometricmomentsofordersupto2forthisregionReplacetheregionwithellipse T Tuytelaars L V Gool WideBaselineStereoMatchingBasedonLocal AffinelyInvariantRegions BMVC2000 AffineInvariantDetection MaximallyStableExtremalRegionsThresholdimageintensities I I0Extractconnectedcomponents ExtremalRegions Findathresholdwhenanextremalregionis MaximallyStable i e localminimumoftherelativegrowthofitssquareApproximatearegionwithanellipse J Mataset al DistinguishedRegionsforWide baselineStereo ResearchReportofCMP 2001 AffineInvariantDetection Summary Underaffinetransformation wedonotknowinadvanceshapesofthecorrespondingregionsEllipsegivenbygeometriccovariancematrixofaregionrobustlyapproximatesthisregionForcorrespondingregionsellipsesalsocorrespond Methods Searchforextremumalongrays Tuytelaars VanGool MaximallyStableExtremalRegions Mataset al Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant PointDescriptors WeknowhowtodetectpointsNextquestion Howtomatchthem Pointdescriptorshouldbe InvariantDistinctive Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant DescriptorsInvarianttoRotation Harriscornerresponsemeasure dependsonlyontheeigenvaluesofthematrixM C Harris M Stephens ACombinedCornerandEdgeDetector 1988 DescriptorsInvarianttoRotation Imagemomentsinpolarcoordinates J Mataset al RotationalInvariantsforWide baselineStereo ResearchReportofCMP 2003 Rotationinpolarcoordinatesistranslationoftheangle 0Thistransformationchangesonlythephaseofthemoments butnotitsmagnitude Rotationinvariantdescriptorconsistsofmagnitudesofmoments Matchingisdonebycomparingvectors mkl k l DescriptorsInvarianttoRotation Findlocalorientation Dominantdirectionofgradient Computeimagederivativesrelativetothisorientation 1K Mikolajczyk C Schmid IndexingBasedonScaleInvariantInterestPoints ICCV20012D Lowe DistinctiveImageFeaturesfromScale InvariantKeypoints AcceptedtoIJCV2004 Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant DescriptorsInvarianttoScale Usethescaledeterminedbydetectortocomputedescriptorinanormalizedframe Forexample momentsintegratedoveranadaptedwindowderivativesadaptedtoscale sIx Contents HarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariant AffineInvariantDescriptors Affineinvariantcolormoments F Mindruet al RecognizingColorPatternsIrrespectiveofViewpointandIllumination CVPR99 Differentcombinationsofthesemomentsarefullyaffineinvariant AlsoinvarianttoaffinetransformationofintensityI aI b AffineInvariantDescriptors Findaffinenormalizedframe J Mataset al RotationalInvariantsforWide baselineStereo ResearchReportofCMP 2003 A Computerotationalinvariantdescriptorinthisnormalizedframe SIFT ScaleInvariantFeatureTransform1 Empiricallyfound2toshowverygoodperformance invarianttoimagerotation scale intensitychange andtomoderateaffinetransformations 1D Lowe DistinctiveImageFeaturesfromScale InvariantKeypoints AcceptedtoIJCV20042K Mikolajczyk C Schmid APerformanceEvaluationofLocalDescriptors CVPR2003 Scale 2 5Rotation 450 SIFT ScaleInvariantFeatureTransform Descriptoroverview Determinescale bymaximizingDoGinscaleandinspace localorientationasthedominantgradientdirection Usethisscaleandorientationtomakeallfurthercomputationsinvarianttoscaleandrotation Computegradientorie

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论