已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3 2极大值与极小值 知识回顾 1 一般地 设函数y f x 在某个区间内可导 则函数在该区间如果f x 0 如果f x 0 则f x 为增函数 则f x 为减函数 用导数法确定函数的单调性时的步骤是 1 3 求出函数的导函数 2 求解不等式f x 0 求得其解集 再根据解集写出单调递增区间 求解不等式f x 0 求得其解集 再根据解集写出单调递减区间 一般地 设函数y f x 在x x0及其附近有定义 如果f x0 的值比x0附近所有各点的函数值都大 我们就说f x0 是函数的一个极大值 记作y极大值 f x0 x0是极大值点 如果f x0 的值比x0附近所有各点的函数值都小 我们就说f x0 是函数的一个极小值 记作y极小值 f x0 x0是极小值点 极大值与极小值统称为极值 一 函数极值的定义 新课讲授 1 在定义中 取得极值的点称为极值点 极值点是自变量 x 的值 极值指的是函数值 y 注意 2 极值是一个局部概念 极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小 3 函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 4 极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 如下图所示 是极大值点 是极小值点 而 二 导数的应用 求函数的极值 1 如果x0是f x 0的一个根 并且在x0的左侧附近f x 0 在x0右侧附近f x 0 那么f x0 是函数f x 的一个极大值 2 如果x0是f x 0的一个根 并且在x0的左侧附近f x 0 那么是f x0 函数f x 的一个极小值 例 求f x x x 的极值 解 3 用函数的导数为0的点 顺次将函数的定义区间分成若干小开区间 并列成表格 检查f x 在方程根左右的值的符号 求出极大值和极小值 3 求函数f x 的极值的步骤 1 求导数f x 2 求方程f x 0的根 x为极值点 解 当x变化时 y y的变化情况如下表 令y 0 解得x1 2 x2 2 当x 2时 y有极大值且y极大值 17 3当x 2时 y有极小值且y极小值 5 y x2 4 例3 下列函数中 x 0是极值点的函数是 a y x3b y x2c y x2 xd y 1 x 分析 做这题需要按求极值的三个步骤 一个一个求出来吗 不需要 因为它只要判断x 0是否是极值点 只要看x 0点两侧的导数是否异号就可以了 b a 2 例4 函数在处具有极值 求a的值 分析 f x 在处有极值 根据一点是极值点的必要条件可知 可求出a的值 解 例5 y alnx bx2 x在x 1和x 2处有极值 求a b的值 解 因为在x 1和x 2处 导数为0 例6 下列说法正确的是 a 函数在闭区间上的极大值一定比极小值大b 函数在闭区间上的最大值一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南玉溪市元江县教育体育系统招聘初中学校教师校园招聘7人(公共基础知识)测试题附答案解析
- 2023年湖北省特岗教师招聘笔试真题汇编附答案解析
- 2025广东广州市天河区培艺学校招聘初中化学老师1人备考题库带答案解析(夺冠)
- 2025陕西宝鸡市眉县招聘社区专职工作人员10人备考题库及1套参考答案详解
- 2025合肥蜀山经济技术开发区社区工作者招聘15人备考题库附答案详解(培优)
- 2025云南大理州剑川县红十字会招聘2人考试历年真题汇编带答案解析
- 2025年区块链应用平台开发项目可行性研究报告
- 2025中国中铁全球高层次人才招聘(公共基础知识)测试题附答案解析
- 2025年河南工业大学招聘博士人才(公共基础知识)测试题附答案解析
- 2025智能工厂仓储作业机器人调度系统与追责制度研究
- 2025年及未来5年市场数据中国氯丙烯行业市场深度分析及行业发展趋势报告
- 青光眼急性发作的护理个案
- 中学生金融知识
- 北大物理卓越计划申请书
- 2025年多重耐药菌医院感染预防与控制中国专家共识
- 药用净化设备项目可行性研究报告(总投资11000万元)(38亩)
- 2025年郑州水务集团有限公司招聘80人笔试考试参考试题及答案解析
- 工业供热协议书范本
- 辅警招聘考试《公安基础知识》全真模拟试卷(2025年版)
- 北京高平赵庄煤矿施工组织设计
- 合同换公司三方协议
评论
0/150
提交评论