外文翻译-SVPWM开关DSTATCOM对功率因数和电压暂降的补偿_第1页
外文翻译-SVPWM开关DSTATCOM对功率因数和电压暂降的补偿_第2页
外文翻译-SVPWM开关DSTATCOM对功率因数和电压暂降的补偿_第3页
外文翻译-SVPWM开关DSTATCOM对功率因数和电压暂降的补偿_第4页
外文翻译-SVPWM开关DSTATCOM对功率因数和电压暂降的补偿_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原文SVPWMSwitchedDSTATCOforPowerFactorandVoltageSagCompensationBishnuP.Muni,S.EswarRao,andJVRVithalAbstract:Inapowerdistributionnetworkofapowerutilityorindustry,thereactivepowermanagementplaysamajorroleinreducingdistributionlossandmaintainingconstantdistributionvoltage.VoltagesourcePWMinverterbasedreactivepowergeneratorhasfastresponsetoreactivepowerdemandandhencecanbeusedforpowerfactorimprovementandvoltagesupport.WiththeavailabilityofnewgenerationDSPswithinbuilteventmanagermodule,thespacevectorPWM(SVPWM)switchingpatternscanbegeneratedeasily.ThispaperproposesSVPWMswitchedDSTATCOMforpowerfactorandvoltagesagcompensation.ThepaperpresentsthesimulationstudiesonSVPWMswitchedDSTATCOMinpowerfactorcontrolmode.ItalsogivesthemathematicalmodelofDSTATCOMinvoltagesagcompensationmode.ThesimulationresultsshowthatthespacevectorPWMstrategycanbeusedforpowerfactorandvoltagecompensation.Further,experimentalstudiesonSVPWMswitchedDSTATCOMhavebeenpresentedtovalidatethecontrolphilosophy.IndexTerms:DSTATCOM,DSPcontrol,Reactivepowercompensation,SVPWM,VoltageSag.I.INTRODUCTIONTheindustrialloadswithlowpowerfactorcauseexcessiveloadingofthedistributiontransformerandlowvoltageatthepointofcommoncoupling(PCC).Thedistributionstaticsynchronouscompensators(DSTATCOM)canhelpingeneratingleadingreactivevolt-ampere(VAR)atthePCCandavoidtheproblemsassociatedwiththelowpowerfactor1.Theavailabilityofhighpowerselfcommutatingsemiconductordevices,newcontrolphilosophiesandhighperformancecomputingelements,like,micro-controllerandDSP,arerevolutionizingtheelectricpowertransmissionanddistributionsystems.Shuntconnected,PWMconverterbasedDSTATCOMaregainingpopularityforimprovingpowerfactorandpowerqualityinindustrialpremises.Inadditiontothereactivepowercompensation,theDSTATCOMcanalsoactasactivefilterorloadconditionertoimprovethepowerquality.DSTATCOMaregenerallyusedforreactivepowermanagementindistributionnetworkwithhighlyfluctuatingloads,likearcfurnace,rollingmillsorhighpowerinductionmotors,inductionmachinebasedwindelectricgenerator,voltageregulationindistributionnetworketc.Momentarypowerinterruptionsandvoltagesagsaremostimportantpowerqualityproblemsaffectingindustrialandlargecommercialcustomers.Voltagesagscausethemalfunctionofthemodemprocesscontrol,programmablelogiccontrol,andvariablespeeddrives.Voltagesagscaninitiatetrippingoffforvoltage-sensitiveloads.Voltagesagsareusuallyassociatedwithafaultsomewhereonpowersystemnetwork.Voltagesagsaremuchmorecommonsincetheycanbeassociatedwithfaultsremotefromthecustomer.Motorstartingalsoresultsinvoltagesagsbutthemagnitudesareusuallynotsevereenoughtocauseequipmentmalfunction.VSCbasedseriescompensatorsaretheidealchoiceforvoltagesagcompensator.DSTATCOMarethemostpreferreddeviceforvoltageflickercompensation.Reference6presentstheexperimentalstudyofadvancedstaticVARcompensatorforvoltagesagmitigation.KalmanfilterbasedunifiedapproachforvoltagesagandvoltageflickermitigationwithDSTATCOMhasbeenreported7.InaDSTATCOM,thevoltagesourceisnormallycontrolledwithhysteresisorrampcomparisontypecurrentregulatedPWMinverter1-4.ThehysteresisandrampcomparisontypecurrentregulatedPWMinvertercanbeimplementedwithconventionalanaloganddigitalcircuit.ThePWMswitchingpatternforDSTACOMcanalsobegeneratedbycomparingphaseshiftedreferencevoltagesignalgeneratedPLLandassociatedcircuitrywithtriangularcarrierwave.TheapplicationofSVPWMforDSTACOMisnotexploredfully.SVPWMtechniqueoffersseveraladvantageslikehigheroutputvoltage(15%morethanconventionalsine-trianglemodulationtechniqueandhence,betterutilizationofDClink),lowerharmonicscontentsandsuitabilityforcompletedigitalimplementationwithnewgenerationsDSPs.ThispaperpresentsanovelDSTATCOMwithSVPWMtechniqueforgenerationofPWMpattern.ThesuitabilityofSVPWMtechniqueforreactivepowermanagementinDSTATCOMhasbeenverifiedbysimulationbyusingSimPowerSystemofMATLABandSimulink.Further,thecontrollogicsforDClinkvoltagecontrol,reactivepowergenerationandPWMpapergenerationwithSVPWM.techniquehavebeenimplementedonTMS320F240basedcontrolcard.Further,thispaperalsopresentsthemathematicalanalysisofDSTATCOMforvoltagesagmitigation.Thepaperhasbeenorganisedinfivesections.ThesecondsectiongivesthecontrolmethodologyforpowerfactorcompensationandbriefintroductionofSVPWMtechnique;thethirdsectiongivesmodellingofDSTATCOMandsimulationresultsofpfcompensation,thefourthsectiongivesthecontrolmethodologyforvoltagesagcompensation,thefifthsectiongivestheexperimentalresultsandthesixthsectiongivestheconclusions.II.CONTROLMETHODOLOGYPFCOMPENSATIONThepowercircuitoftheDSTATCOMandtheinstantaneouspowerflowintheDSTATCOMareshowninFigs.1and2,respectively.Thesourcepowerhastwocomponents,viz.instantaneousactivepowerandinstantaneousreactivepower.Similarly,theloadpowerandinverterpoweralsocompriseofactiveandreactivecomponents.Forfullreactivepowercompensationoftheload,theinverterhastosupplyreactivepowerofthesamemagnitude,butofoppositesign.Thus,insuchacase,thereactivepowerdrawnfromthesourceiszero.Hence,ifreactivepowersuppliedbythesourceismonitoredandiscontrolledinclosed-looptomaintainitatzero,thenthedesiredobjectiveoffullVARcompensationorunitypowerfactorcanbeachieved.TheDSTATCOMcanoperateinvariableVARgenerationandpowerfactormode.ThecontrolblockdiagramofDSTATCOMinreactivepowergenerationmodeisshowninFig.3.Thethree-phasePCCvoltages(,)andsourcecurrents(,saVbscsai,)aremeasuredandareconvertedtoacontrollevelsignalsbyusingPTS,CTSsbicandsignalconditioningcards.Thesethree-phasevoltageandcurrentsignalsatcontrollevelareconvertedintoequivalentaxis(twoaxisstationaryreferenceframe)components(,).Thecurrentorvoltagesignalsin(two-axessisvstationary)frameareconvertedtod-q(two-axessynchronouslyrotatingreference)frame.Insynchronouslyrotatingreferenceframe,thedirectaxiscurrentcomponentisproportionaltoactivepowerandquadratureaxiscurrentcomponentisproportionaltoreactivepower2.Theequationsinvolvedforphasetransformationsarewellknown1.sasbscvvC(1)12033(2)cosindsqvv(3)csiindsqvv(4)Where,:SourceVolatgessaVbsc,:Volatgesintwo-axesstationeryframev,:Volatgesintwo-axessynchronouslyrotatingframedqInreactivepowercontrolloop,thereference,reactivepoweriscomparedwiththeactualreactivepowergeneratedbytheSTATCOMandtheerrorinreactivepowerisprocessedbythePIcontrollertogivethedirectaxiscomponentofconverterreferencevoltage.TheDClinkvoltageoftheSTATCOMshouldbeselectedsuchthattheconvertercandelivertheratedreactivepowerinthedesiredrangeofgridvoltage.ThereferenceDClinkvoltageiscomparedwithactualDClinkvoltageandtheerrorinDClinkvoltageisprocessedbythePIcontrollertogivequadratureaxiscomponentofconverterreferencevoltage.Thedirectaxisandquadratureaxisreferencevoltagesaretransformedtotwo-axesstationaryreferenceframeandfedtoSVPWMblock.TheSVPWMblockreceivesthereferencevoltagesinframeandgeneratesPWMswitchingsignals.Dependingonthemagnitudeandphaseangleofthereferencevoltagespacevector,thedurationoftheadjacentswitchingstatevectorsarecalculated8andaccordinglythePWMswitchingsignalsaregeneratedbyinternalcompareregisters.ThePWMswitchingsignalsgeneratedbytheDSParegiventoIGBTsofVSCthroughrespectivegatedrives.SVPWMswitchingstrategyhasmanyadvantagessuchaswell-definedharmonicspectrum,optimumswitchingpatterns,andhigheracoutputvoltagecomparedsinetrianglecomparisonmethod.Further,thepresentgenerationDSPshavespecialhardwarefeatureforimplementationofSVPWMswitchingstrategy.Forathree-phasevoltagesourceconvertertherearetotallyeightpossibleswitchingpatterns,outofwhichsixareactiveandtwoarenon-activeorzeroswitchingstates.AsshowninFig.4,sixvoltagespacevectorsdividethewholespaceintosixsectors,1to6.Excepttwozerovectors,VoandV7,allotheractivespacevectorshavethesamemagnitudeof(2/3).DCVFromFig.3,itisseenthattheinputtotheSVPWMblockistheinverterreferencevoltagevectorintheframe.Accordingtothephaseangleofthereferencevoltagevectorinthecoordinatesthesectorinwhichthereferencevoltagevectorislocatedcanbeeasilyfoundout.InSVPWM,thereferencevoltagevectorissynthesizedbytheadjacentvectorsofthelocatedsectorinordertominimizetheswitchingtimesandtominimizethecurrentharmonics.ThereferencespacevectorV*canbedecomposedasnormalized,andinvthecoordinatesasgivenineq.5.Thesectornumberofreferencevoltagespacevectorcanbeobtainedfromeq.7.Where,V:Magnitudeofreferencevoltagevector.:PhaseangleofV*incoordinateS:Sectornumber1to6IfthereferencespacevectorliesinsectorI,thereferencespacevectorcanbedecomposedasshowninFig.4.InordertosynthesizeV*,therequireddurationsoftwoadjacentvectors,and,andofzerovectorsinoneswitchingperiodTare,4V61and,respectively,andcanbecalculatedbyeq.8.Relationsforother2T01T20caseswhenV*islocatedinSector2-6canbeobtainedbyrotatingthecoordinateshowninFig.5anticlockwisebyanangle.Thereareseveral(1)3SmethodsforSVPWMtogeneratethedesiredPWMpulses.ThePWMpatternsaregeneratedbytheeventmanagermoduleofDSPTMS320F2408.Ineventmanagermodule,atimerwithaperiodofT/2issetasPWMcarriertimerandoperatesatcontinuousup/downcountingmode.Usingeq.8,threecountervaluesarecalculatedandloadedintimer.ThesethreecountervaluesarecomparedwiththetimercountingvalueinrealtogeneratethePWMpattern.Fig.5showsthemethodofPWMgenerationwhenthereferencespacevectorlieson1Stsector.*3cos2inDCvV(5)*2*2()dqvv(6)*1tan()3qdSv(7)*1*2012()3vTTA(8)011202344TM(9)II.MODELLINGANDSIMULATIONSimulationstudieshavebeencarriedouttovalidatetheSVPWMswitchingpatterngenerationtechniqueforDSTATCOMoperatinginunitypowerfactorcontrolmode.TheentirepowercircuitandcontrolcircuitofDSTATCOMhavebeenmodeledandsimulatedusingSIMPOWERSystemofMATLAB&SIMULINK.Inthepresentpaper,thepowersystemnetworkhasbeenmodelledasanACsourcefeedingequivalentinductiveorcapacitiveload.TheDSTATCOMiscontrolledsuchthatthesourcecurrentisdrawninphasewiththesourcevoltage.TheschematicofDSTATCOMisshownFig.7.Fig.8showsthesourcephasevoltageandsourcecurrentwiththeDSTATCOMoperatinginclosedlooppowerfactorcontrolmode.TheDSTATCOMisswitchedontothenetworkwithanactiveandreactiveloadcombinationof500KWand400KVARlagging.At0.3second,anotheractiveandreactiveloadof400kWand300KVARisswitchedontothenetworkandat0.4second,itisswitchedoff.Itisobservedthatthesourcecurrentisdrawninphasewiththesourcevoltagebothduringsteadystateandtransientsduetosuddenloadchange.TheresponseoftheDSTACOMisoftheorderofquartercycleduringsteploadchange.Fig.8showsthesourcephasevoltage,DSTATCOMphasecurrentandDClinkvoltage.ItisobservedthattheDSTATCOMdrawsleadingreactivecurrenttocompensatelaggingreactivepowerdrawnbytheload.ThebottomtraceinFig.9showstheDClinkvoltagewhichismaintainedatreferencevoltageof1000VDC.Fromtheresultsofthesesimulationstudies,itisobservedthatthesourcecurrentisinphasewiththesourcevoltageatsteady-stateandtransients,exceptforabriefperiodofnearlyaquartercycle.Thus,theresponseofDSTATCOMtoreactivepowerdemandisoftheorderofnearlyonequartercycle.TheDClinkvoltagechangesslightlyatthetimeofstepapplicationorremovalofload.TheDSTATCOMdrawscurrentatnearly90leadingwithrespecttotheloadvoltage.ThesimulationresultsshowthattheDSTACOMwithSVPWMswitchingstrategyiscapableofmeetingreactivepowerdemandoftheloadbothduringsteadystateandtransients.IV.CONTROLMETHODOLOGYFORVOLTAGESAGCOMPENSATIONAvoltagesagisanthereductioninrmsvalueoftheACvoltage,atthepowerfrequency,fordurationsfromahalf-cycletoafewseconds5.Magnitude,durationandphasejump,ifanyarethethreemostimportantparametersforcharacterizingvoltagesag.Motorstartingandshort-circuitfaultsinpowersystemsarethetwomaincausesofvoltagesags.Motorstartingproducesshallowsags,butoflongerduration.Short-circuitfaultscauseseverevoltagesags,andhasamajorimpactonpowerquality.DSTATCOMcanadjustitsreactivepoweroutputindependentlyofitssupplyvoltage.Thus,DSTACOMcanincreaseitscapacitivereactivepoweroutputduringsourcevoltagereductionbyoperatingatitsmaximumcapacityandtherebyimprovingthevoltageatPCC.TheequivalentcircuitofDSTATCOMinvoltagecompensationmodeisshowninFig.10.Equations(10)to(12)forvoltagesagmodeofoperationofDSTATCOMcanbeobtainedfromequivalentcircuitbyapplyingKVLandKCL.ItcanbeobservedthattheamountofreactivecurrentneededtomaintainthePCCvoltageatagivenvalueduringavoltagesagisinverselyproportionaltothesystemreactanceXs.TheerrorinPCCvoltageandsetvaluecanbeprocessedbyaPIcontrollertogeneratethequadraturecomponentofthecurrent.Thissignalissummedwithquadraturecomponentofloadcurrenttogeneratethequadraturecomponentofthereferencecurrent.TheDCcapacitorvoltageregulatingloopgivesthedirectaxiscomponentofthereferencecurrent.TheerrorindirectaxisreferencecurrentandDSTATCOMgenerateddirectaxiscurrentisprocessedbyaPIcontrollertogeneratedirectaxisvoltagereference.Similarly,theerrorinquadratureaxisreferencecurrentandDSTATCOMgeneratedquadratureaxiscurrentisprocessedbyaPIcontrollertogeneratequadratureaxisvoltagereference.Directandqaudratureaxesreferencevoltagesaretransformedtoreferenceframe.TheSVPWMblockreceivesthereferencevoltagesinframeandgeneratesPWMswitchingsignals.EXPERIMENTALRESULTSA150KVARDSTATCOMhasbeendevelopedusingthecontrolmethodologymentionedinSection2.Theclosedloopcontrolofreactivepower,DCvoltagecontrolloopsandPWMswitchingsignalgenerationbasedonspacevectorPWMapproach,havebeenimplementedonDSPTMS320F240.Thecontrolsoftwareforclosedloopreactivepowergenerationhasbeendeveloped.ExtensiveexperimentshavebeencarriedoutontheDSTATCOM.TheDSTATCOMhasbeentestedinvariableVARgeneratormode.InvariableVARgeneratormode,theDSTATCOMhasbeentestedforbothlaggingandleadingpowergenerationmodes.Fig.11showsthePCCvoltageandDSTATCOMcurrentwhentheDSTATCOMisoperatinglaggingVARgeneratormode.InleadingVARgeneratormode,thePCCvoltageandDSTATCOMcurrentisshowninFig.12.ExtensiveexperimentshavebeencarriedoutontheDSTATCOMforvarioussteadystateandtransientoperatingconditionsandtheperformancehasbeenfoundtobesatisfactory.ThephotographoftheDSTATCOMisshowninFig.13.V.CONCLUSIONSWiththeproposedSVPWMbasedcontrollogic,thePWMconverteroutputvoltagesarecontrolledsuchthatthereactivepowergeneratedbytheDSTATCOMcloselyfollowsthereferencereactivepowerandtheDClinkvoltageismaintainedatdesiredvalue.Thesimulationandexperimentalresultsshowthat,theproposedDSTATCOMcontrollerwithSVPWMswitchingpatterngenerationtechniquecanbeusedforclosedloopreactivepowergenerationmodeofoperation.TheentirecontrollogicsofDClinkvoltagecontrol,reactivepowercontrolloopandSVPWMbasedPWMgenerationandprotectionlogicshavebeenimplanteddigitallyonaTMS320F240basedDSPcard.DSTATCOMhaslimitedvoltagesagcompensationcapabilityunlikeVSCconverterbasedseriescompensators.ACKNOWLEDGMENTTheauthorsgratefullyacknowledgethesupportofBHEL,CorporateR&DforprovidingfacilitiestocarryoutthepresentworkandpermissiontopresentthepaperinPEDES2006.REFERENCES1BishnuP.Muni,S.EswarRaoet.al.,Developmentof500KVARDSTATCOMforDistributionUtilityandIndustrialApplications,ConferenceProceedings,IEEE,RegionTenAnnualConference,TENCON-03,2003,pp278-282.2C.D.SchauderandH.Mehta,VectorAnalysisandControlofAdvancedStaticVARCompensator,IEEProceedingsC,Vol140,No.4,July1993.3B.N.Singh,A.ChandraandK.AI-Haddad,DSP-basedIndirect-Current-ControlledSTATCOMPartI:EvaluationofCurrentControlTechniques,IEEProceedings,ElectricalPowerApplications,Vol.147,No.2March2000,pp107-112.4H.Akagi,NewTrendsinActiveFilterssforimprovingpowerquality,IEEE-PEDESConf.Record,1996,pp417-425.5TransmissionandDistributionCommittee,IEEEGuideforServicetoEquipmentSensitivetoMomentaryVoltageDisturbances,IEEEStd1250-19956A.Elnady,M.MagdyandA.Salama,UnifiedApproachforMitigatingVoltageSagandVoltageFlickerUsingTheDSTATCOM,IEEETransonPowerDelivery,Vol.20,No.2,April2005,pp992-1000.7P.Wang,N.Jenkins,andM.H.J.Bollen,ExperimentalInvestigationofVoltageSagMitigationbyanAdvancedStaticVARCompensator,IEEETrans.PowerDel.,vol.13,no.4,pp.1461-1467,Oct.1998.8ACInductionMotorControlUsingConstantV/HzPrincipleandSpaceVectorPWMTechniquewithTMS320C240,TexasInstruments,ApplicationReport(SPRA284A).中文译文SVPWM开关DSTATCOM对功率因数和电压暂降的补偿BishnuP.Muni,S.EswarRao,andJVRVithal摘要:在一个电力事业和产业部门的配电系统中,无功功率的管理在降低配电损耗和保持电网电压稳定方面起到很重要的作用。基于无功功率发生器的电压源型脉冲宽度调制变换器(PWMinverter)可以快速响应无功功率补偿需求,因此可以用于改进功率因数和维持电压。由于具有嵌入式事件管理模块的新一代数据信号处理器DSP的实用性,空间矢量脉宽调制(SVPWM)开关模式可以很方便的产生。这篇论文主要论述SVPWM开关DSTATCOM对功率因数和电压暂降的补偿。论文介绍了关于SVPWM开关DSTATCOM在功率因数控制方式的仿真研究,还介绍了DSTATCOM在电压暂降补偿的数学模型。仿真结果显示空间矢量脉宽调制策略可以应用于功率因数和电压暂降的补偿。更进一步,关于SVPWM开关DSTATCOM的实验性研究已经出现在用于证实控制体系。关键词:DSTATCOM、DSP控制、无功功率补偿、SVPWM、电压暂降I绪论具有低功率因数的工业负载导致配电变压器的过载和使电压降低到普通耦合点。配电网静止同步补偿器(DSTATCOM)可以帮助在普通耦合点发生主要的电抗性无功功率,以避免一系列问题与低功率因数的关联1。高压自身的整流半导体设备的实用性,新的控制体系和高精度的计算原理,同时单片机和DSP引起了输电和配电系统的巨大革命。逃避连接,基于PWM转换器的DSTATCOM开始流行于工业系统中用于提高功率因数和电能质量。除了无功功率补偿外,DSTATCOM在有源滤波器和负荷调节方面起到积极的作用,用于改善电能质量。DSTATCOM一般应用于具有高脉动载荷配电网络中的无功功率管理,如弧形炉、轧钢厂、高功率发动机、基于感应式电机的风力发电机,配电网中的电压变动率等等。瞬时供电中断和电压暂降是非常严重电能质量问题,给工业部门和大型商贸公司带来了很大的影响。电压暂降可能引起调制解调器、可编程逻辑控制器和变速驱动器的故障。电压暂降能导致一些敏感电压负载的跳闸。电压暂降通常与电力系统网络某一点的故障联合起来。电压暂降十分的普遍,可以与用户细微的故障联合起来。电动机的启动会导致电压暂降,但是大部分不至于严重到引起设备故障。基于一系列补偿的VSC基于一系列补偿是电压暂降补偿最佳的选择。DSTATCOM是电压波动补偿的最好的选择。参考书目6介绍了先进的静止无功补偿器缓解电压暂降的实验性研究。基于统一途径缓解电压暂降和电压波动的使用DSTATCOM的卡曼滤波器已经被报道7。在DSTATCOM中,电压源一般由滞后或者相对斜面的电流调节的PWM变换器控制的1-4。调节PWM变换器的滞后或者相对斜面的电流可以由普通的模拟和数字电子电路来实现。DSTATCOM的PWM开关模式也可以通过产生比较相移参考电压信号产生的PLL产生三角载波相关电路。SVPWM技术在DSTATCOM的应用还没有得到充分的研究证实。空间矢量脉冲宽度调制技术具有明显几个优势,较高的输出电压(比传统的正弦-三角调制技术高出15%,因此,可以更好地利用直流环节),较低的谐波容量和使用新一代DSP可行性的完成数据处理和数据执行。本文介绍了一种新型的以SVPWM技术一代作为PWM模式的DSTATCOM。在STATCOM中,应用了SVPWM技术的无功功率管理由模拟使用SIMPOWER系统的MATLAB和SIMULINK已得到仿真确认。此外,控制逻辑直流环节电压控制,无功功率的发生和使用SVPWM技术的PWM文件的产生被基于TMS320F240的控制卡实施。此外,本文还通过数学分析,介绍了DSTATCOM在缓解电压暂降上的作用。本论文由五个部分组成。第二部分给出了功率因数补偿的控制方法,并且简单介绍了SVPWM技术;第三部分给出了STATCOM的搭建模型和无功功率补偿的仿真结果;第四部分给出了电压暂降补偿的控制方法;第五部分给出了实验结果;第六部分给出了论文结论。II、无功功率补偿的控制方法DSTATCOM的主电路结构和在DSTATCOM中瞬时功率流动分别如图1和图2所示,该电源功率有两个组成部分,即瞬时有功功率和瞬时无功功率。同样,负载功率和逆变电源也是由有功和无功组成。为充分对负载进行无功补偿,逆变器必须提供相同幅度的无功功率,但应该反向。因此,在这种情况下,无功功率制定从源头上是零。因此,如果由这种逆变器提供的无功功率被监测和控制是在闭环系统以维持在零,则充分无功补偿或整功率因数预期的目的是可以实现的。图1DSTATCOM的主电路结构图2配网DSTATCOM中的功率流动该DSTATCOM可以运作于可变的无功功率和功率因数的模式。DSTATCOM在无功功率发生模式的控制框图如图3所示。三相的PCC电压(,)和电saVbsc流(,)通过电压互感器、电流互感器和信号调理电路测量便且转换成可被saibsc控制处理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论