




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
外文原文Concisereviewjobshopschedulingproblem(JSSP)technologyLintroductionProductionschedulingisthecorecontentofCIMSresearchfieldproductionmanagementandkeytechnology,jobshopschedulingproblem(JSSP)isthemostdifficultconstraintcombinatorialoptimizationproblemandatypicalnp-hardproblem,itscharacteristicisnotaneffectivealgorithmtofindouttheoptimalsolutioninpolynomialtime.Moderneconomyincreasinglyintensivecompetitiontrendandchanginguserrequirementsforproducerstorevaluatethemanufacturingstrategy,suchasshorterproductioncycleandjust-in-timeinventorysystems,suchastheJSSPproductionenvironmentisthemostsuitableformeettheneedsofeconomicandexistingusers.Useoflimitedresourcestosatisfytheprocessingofvariousconstraints,anddeterminetheworkpieceontherelatedequipmenttoprocesstheorderandtime,toensuretheperformanceoftheselectedoptimum,canpotentiallyimprovetheeconomicbenefitsofenterprises,theJSSPhasanumberofpracticalapplicationbackground,development,preciseschedulingalgorithmisaneffectiveschedulingandoptimizationareaimportanttopic.TheJSSPproblemsinitiallyusingoptimizationmethod,butcalculationcantbeverybig,andpractical.Inrecentyears,basedonbiology,physics,artificialintelligence,neuralnetworks,therapiddevelopmentofcomputertechnologyandsimulationtechnology,hasopenedupanewtrainofthoughtfortheresearchofschedulingproblem.Inthispaper,accordingtotheJSSPproblemofalargenumberofliterature,theclassificationofthetheoryandmethodofstudyonthesystemandintroducestherecentdevelopmentsinthisfield,discussthedirectionoffurtherresearch.2thegeneralframeworkofJSSPproblem2.1problemdescriptionJSSPproblemcanbedescribedas:machinesetin()addaworkpieceset|in(),eachartifactcontainsaprocesssetcomposedofmulti-channelprocess.Artifactshaveapredeterminedsequence,eachworkingprocedureofprocessingtimetatagiventimeeachmachinecanonlybeaworkpieces,andeachpiececanonlybehandledbyamachine.Differentworkpiecemachiningsequenceisunrestricted,processesarenotallowedtointerrupt;ForthebeginningtimeofeachworkingprocedureinthefeasibleschedulingMinimizethetotalcompletiontime,namelyWorkpiecemachiningsequenceofsolvingsatisfiestheconditionsthatconstitutetheJSSPschedulingproblem.Lineproductionschedulingproblem(FSSP)isaspecialformofJSSPproblemshavethesameprocessingoperations(i.e.,allartifacts).Inadditiontheobjectivefunctioncanselectwaitingtime,processtimeanddelaytimeaverageandmaximum,ormultipletargetcombinationformofmulti-objectiveproblem.2.2JSSPmodelrepresentation2.2.1integerprogramming(IP)modelIntegerprogrammingmodelisputforwardbytheBaker,needtoconsidertwokindsofconstraints:workpiecebeforeandaftertheprocessofconstraintsandworkingprocedureofcongestionconstraints.Saidtheworkpieceonthemachinekj,eachinandtheprocessingtimeandcompletiontime.Ifthemachinetheworkpiecemachiningprocessonthehkbeforemachine(use),hastherelation;Ontheotherhand,if,thereis.Defineinstructionscoefficient,toalargenumber,thentheprocessconstraintisexpressedasbeforeandafter;Processnon-blockingconstraintsareexpressedas:totargettheIPmodelcanbeexpressedas:Iftheaverageprocesstimeasobjectivefunction,whichcanbechanged.MwithinthescopeofthefeasibleregionoflargenumberofvaluesgivenbyVanHulle:.2.2.3graphmodelJSSPofconnectiondiagrammodelisputforwardbyBalas,N,containingalltheworkingprocedureoftherepresentativenodecontainsAlinkadjacentprocesswiththesameworkpieceedge,Econtainslinksonthesamemachineprocessingprocessoftheconnection,theconnectioncanhavetwopossibledirection.Theschedulingprocessconnectfixedallofthedirectionoftheedge,todeterminetheorderofthesamemachineworkingprocedure,andUSEStheconnectionwithpreferredarrowwhilereplacingtheconnection.3JSSPresearchmethodsThroughtheanalysisofalargenumberofliteratureresearchmethodsofJSSPareclassifiedintotwocategories:optimizationmethodandtheapproximate/heuristicmethod.Optimizationmethodsmainlyincludemixedintegerlinearprogramming(MILP),branchandbound(B&B)methodandLaplacerelaxationmethod,etc.Approximate/heuristicwasoriginallyduetosmallamountofcalculationandthealgorithmiseasytoimplementandintroducingtheJSSPproblems,mainlyincludingprioritydispatchingrules(PDRs),artificialintelligence(AI),neuralnetwork(NN)andadjacentdomainsearchmethod(NS).Theneighborhoodsearchmethodandtabusearch(TS),geneticalgorithm(GA)andsimulatedannealing(SA),etc.CanbesaidAstheheuristic(Meta-heuristic)approximationoptimizationmethod3.1optimizationmethodOptimizationmethodisabletogenerateanaccuratemethodoftheoptimalsolution.JohnsonwasoriginallyproposedinviewoftheproblemsJohnsonrules,althoughitisaccordingtothemethodofcalculatingtheflowprocess,butithasagreatinfluenceonthelaterresearch.SincethenhaveapolynomialtimealgorithmtosolvethespecialJSSPproblems,suchastheresearchlaidthefoundationoftheclassicalschedulingtheory.In6osofthe20thcentury,inviewofsolvingintegerprogrammingproblems,putforwardusingmoresophisticatedmathematicalstructuretoeliminateimpliedthesearchingspaceoftheoptimalsolutioninordertoimprovethesearchingefficiencyofenumerationalgorithm,branchandboundmethod(B&B)hasgreatachievementsintheoreticalresearch.TheJSSPproblemofapossiblesolution,solarge-scaleproblemswithcompleteenumerationmethodoncalculationisnotpossible.7osemphasisonresearchincomputationalcomplexity,Lenstraprovesthatthreeconditionsaresuchasanp-hardproblem.BalasJSSPB8algorithm,thisproblemistheearliestthenCarlieretcbasedonJacksonslongesttotalprocessingtimeremaining(MWR)rulesofscheduling(JPS),advancehandhaveachievedgoodresults.ToovercomethelimitationsofmathematicalrepresentationandsoftwaremethodsandrecentDavisdecompositionstrategybasedonmathematicalprogrammingisputforward,suchastheschedulingproblemdecompositionmultiplesubproblems,considereachsubproblemrespectivelyanditslimit,toimprovetheabilitytocalculate.3.2approximate/heuristicmethod3.2.1prioritydispatchingrulesTheearliestdispatchrulesputforwardbyJacksonandSmith.DistributionrulesoftheJSSPSPT(theshortestprocessingtime),LPT(thelongestprocessingtime),MWR(thelongestremainingtotalprocessingtime),IWRresidualtotalprocessingtime(minimum),MOR(surplus)isthemaximumnumberofprocesses,LOR(minimumresidualprocessnumber),EDD(theearliestdeliverydate)andFCFS(choosethefirststeponthesamemachinetheworkpieceinthequeue),etc.Panwalkarthroughperformanceindexessuchasclassifiedtotalabout113dispatchingrules.Wu.Theschedulingrulescanbedividedintothreecategories,namely,jobinformationrelatedwiththecombinationofthepriorityrules,priorityrulesandswitchingandweighted.Prioritydispatchingrulesofapproximateoptimizationmethod,thekeyliesinhowtoperformanceforagivenproblem,choosethebestrules.Lookfromtheruleofoptimizationresults,SPTcanreducealltheaverageflowtimeofoperation,EDDtooptimizethemaximumextensionrelatedgoal.Therulesbetweentheswitchandtheresultingproblems(suchaserrorrepair)isrecentlyactiveareaofresearch.3.2.2artificialintelligencetechnologyInartificialintelligenceandexpertsysteminthe80shasanimportantroleinthestudyofscheduling,canproducemorecomplexthanprecedencerulesbasedontheheuristicschedulingsystem,andcangetalotofinformationfromthespecialdatastructure,thecalculationcomparisonisweakness.ISISistheearliestoneoftheexpertsystembasedonAItechnologytosolvespecificJSSP,useconstraintstoguidethesearchmethod,thegoalconstraintsbasedonthedateofdeliveryandtheproducts,theprocessingcapabilityasaphysicalconstraintsofresources.ISISisdividedintothreelayersstructure,respectivelychooseorder,capacityanalysis,executionscheduling,whileaddingarefactoringandmodifytheschedulingfunctionoflearning.Forlarge-scaleproblemislimitedtoasingleexpertsystemoflimitedknowledgeandability,addresourceagent,taskagentandagentcollaborationmechanism,recentlyappeareddistributedschedulingsystem.TheAItechnologyofhowtocoordinatetheproxymechanism,thereisnouniformdesignandguidingideas,centralizationanddecentralizationofjobschedulingideasarestillinthediscussion.3.2.3neuralnetworkmethodNeuralnetworkisappliedtotheschedulingproblemhasahistoryofmorethantenyears,theuseofguidinglearningneuralnetworktofindtherelationshipbetweenthesysteminput,outputandinputcharacteristicsincludejobcharacteristics(suchasquantity,paths,deliverytimeandprocessingtime,etc.),theoutputisrelatedtosortingandperformancemetrics.AppliedatpresentmostistheBPnetwork,Rabelarriveaccordingtodifferentpattern,thesortingprocessplansandproceduresafterusingvalue-addedJSSPneuralnetworkstosolvetheproblem,accordingtotheenergyfunctionofneuralnetworksisproposedbasedonrelaxationmodeldefinedHopfieldnetworktosolvetheproblemforaclassofclassicalscheduling.Duetoproducealargenumberofinfeasiblesolutionandcalculationtimeislonger,solvetheschedulingproblemofinefficientNN,andguidethelearningneuralnetworkbytrainingtypeistryingtofindtherelationshipbetweentheinputandoutput,astheproblemsizeincreases,thesizeofthenetworkalsoincreasessharply3.2.4neighborhoodsearchmethodSolvingJSSPandheuristicmethodisdevelopedbasedontheneighborhoodsearchstrategy,heuristicdonotattempttogettheoptimalsolutioninpolynomialtime,buttocompromiseincomputingtimeandschedulingresults.Herearethreekindsofrepresentativeofheuristic:1.Thesimulatedannealing(SA)SAisbasedontheMenteCarloiterativesolutionofakindofglobalprobabilitysearchalgorithm,isakindofserialoptimizationalgorithmanditsconvergencerequirestheinitialtemperatureshouldbehighenough,thesolutionspaceofeachstatecanappearinalmostthesameprobability.VanLaarhoovenforjssPproblemisputforward,suchasneighborhoodfunctionisanimportantsymbolofadjacentkeyprocessingorderoperationprocessofchange,andmustobeytheprocessconditionsofprocessingonthesamemachine.KolonkoprovestandardjssPneighborhoodisasymmetry,andbecauseoftheweakconvergenceofSA,putforwardonthebasisofSAcombinationofGAhybridheuristic.Literature28useSAacceptthenatureofthepoorindividualsatacertainprobability,combininggeneticalgorithmandimprovedtheselectionmechanismtoimproveconvergencespeed.Therecenttrendintheresearchfieldofschedulingproblemisabigistocombinedifferentneighborhoodsearchmethodtoformhybridheuristic.2.Thetabusearch(TS)TSisGloverproposedintelligentprocessofagraduallywithmemoryfunctioninglobaloptimizationalgorithm,tochangethesortofsearchinallthefeasiblesolutionspace.Bysettingthetaboolist,avoidfallingintolocaloptimalsearchorrepeatthepast,usingthemediumandlongtermstoragemechanismforstrengtheninganddiversityofthesearch,theJSSPproblemssuchastheLagunathreeTSschedulingstrategybasedonsimplemoving.Taillardcombiningacceleratedthestarttimeofsearchstrategytopreventrepeatedcalculationprocessandputsforwardafastvaluationstrategy,butonlyhalf-and-halfactivityschedulingeffectively.WhileNowickiconsideringthesolutionqualityandcomputationtime,suchascombinationofTaillardTSalgorithm,onthebasisoftheVanLaarhooven1neighborhood,applyasinglecriticalpathisdividedintodifferentblockstostrictlylimittheneighboringdomain,greatlyimprovethecomputationalefficiency.3.Geneticalgorithm(GA)3.2.5othertheoriesandtechnologies.FromthepointoftheresearchanddevelopmentofJSSP,hasmadecertainprogressontheoryandapplication,somenewresearchmethodsandtechniques:1)whenthesystemwithuncertainprocessingtimeoradjusttime,throughmodelingandfuzzysettheorytosolvethefuzzylogicapproach.Grabotofmulti-objectiveproblems,suchascombinationofdispatchingrulesusingfuzzylogicrule,andKruckyputforwardtoadjustproductmixofproductionlinetominimizethefuzzylogicofthetime.2)ReactiveScheduling(ReactiveScheduling)wasduetotheemergencysystemsabilitytorepairacompletedScheduling.Emergenciesincludingemergencyordersandinterruptresources,suchasasuddenemergenciestoScheduling(rescheduling).ReactiveSchedulinghasbecomeahottopicinthestudyofproductionScheduling,butitstechnologyisnotmatureenough.3)consideringtheinformalperformanceindexofthehomeworkinadvance/tardinesscostsjobsortingbasedonjust-in-time(JIT)productionmanagementtechnology,forjssPtheoryopensupanewresearchfield.4)inschedulingTheorycombinedwiththeactualproductionapplication,Eliyahul4isputforwardbasedontheTheoryofsynchronousmanufacturinglimited(goingofConstraints),isassociatedwiththemarketdemandtorapidlyandflexiblyintheproductionoftransfersystemmethodofmaterials,thereareafewkeylimit,itscoreschedulingistosorttheserestrictionsoperationplan.LimitTheoryissuccessfullyappliedtotheschedulingsystemasanexample.4discussionandprospectJSSPschedulingproblemnearly4oyearsofapplicationanddevelopmentstatusquo,withfruitfulresults,therearealsomanyproblemswhichremaintobesolvetheproblemComparedwiththeoptimizationalgorithms,approximation/heuristicalgorithmisofobviousadvantageliesin:heuristicalgorithmisrelativelysimple;Highcomputationalefficiency,thealgorithmisflexible.Buttheapproximate/heuristicalgorithmhasobviousdeficiency,whichlikelyproducedthantheglobaloptimalsolutionsofXieChaalot,andthedifferencedegreeisnotclearenough.Therefore,reasonablecalculationtimeandbegtheoptimalityofthesolutionbecamethestandardtomeasuretheperformanceoftheheuristicalgorithm.Aheuristicthanusedalonetwoheuristiccombininghybridheuristicalgorithmtoachievegoodresults.Neighborhoodsearchparetosolutionstocertainprobabilityofacceptance,soastoescapefromlocaloptimum,butitsmaindrawbackisthatneedmorestepstoimplement,howtochoosefromlocaltoglobaloptimalneighborhoodstructure,makeitshaveimprovedsexualanddiversityofthesearchmechanism,itisveryimportant.StopconditionissettoalargenumberofGA,willreachtheoptimalandthealgorithmcantstoptheproblem,thekeyishowtocoordinatetherelationshipbetween.TheAItechnologyandneuralnetwork,howtothroughtheinternaldistributionofparallelprocessingcapabilitiestoquicklyfindthesearchspaceanddecreasetheamountofcalculationofmassproblemneedsfurtherresearch.Theauthorthinksthatcanexpandtheresearchfromthefollowingseveralaspects:algorithmoftechnologyapplication.Theauthorthinksthatinallkindsofalgorithmtheoryandapplicationresearchinthefutureatthesametime,shouldpayattentiontothestructureofaunifiedframeworkandresearchsystem,absorbingachievementsofinterdisciplinary,theheuristicthanusedalonetwoheuristiccombininghybridheuristicalgorithmtoachievegoodresults.Neighborhoodsearchparetosolutionstocertainprobabilityofacceptance,soastoescapefromlocaloptimum,butitsmaindrawbackisthatneedmorestepstoimplement,how1.TheproblemofJSSP,thegeneralframework,modelandresearchmethodforsolvingproductionschedulingandothercomplexcombinatorialoptimizationproblemisareference,shouldexpandtomoregeneralJSSPproblemundertheconditionofresearch.2.Theconstraintsoflocalsearchalgorithmandenhancethefurtherstudyoftheconvergenceandcomputationspeed.3.Theproblemoflarge-scaleoptimizationproblemsasrestrictiveJSSPremainsachallenge,althoughheuristicalgorithmcanbettersolvelarge-scaleaskedProblem,butmustbemorein-depthstudyitsconvergenceanditslimitedtimelinessproblem.4.Theactualproductionenvironmentisdynamic,withchangingstructureandgoals,thereisalsotheschedulingoftheinterrupt.Ifuseofflineschedulingtoguidetheproductionprocess,makethewaittimeandanincreaseinquantityofproducts,equipmentutilization,productqualityandbatchprocessingperformance.Sotheinteractivescheduling(interactivescheduling)andonlineschedulingresearchistheresearchdirectioninthefuture.algorithmoftechnologyapplication.Theauthorthinksthatinallkindsofalgorithmtheoryandapplicationresearchinthefutureatthesametime,shouldpayattentiontothestructureofaunifiedframeworkandresearchsystem,absorbingachievementsofinterdisciplinary,the5.Seekingnewmathematicaltoolsandanalysismethods,establishingJSSPalgorithmcomplexityandconvergenceanalysisoftheresearchtheory,theconvergencespeedofthealgorithmEstimateandoptimizethedegrees.5conclusionJSSPprobleminthepast40yearsoftheoryandtechnicalmethods,andconcludestheexistingdecentralizedresultsinthisfieldandtheadvantagesanddisadvantagesofeachalgorithmoftechnologyapplication.Theauthorthinksthatinallkindsofalgorithmtheoryandapplicationresearchinthefutureatthesametime,shouldpayattentiontothestructureofaunifiedframeworkandresearchsystem,absorbingachievementsofinterdisciplinary,theintroductionofnewresearchtools,andthedevelopmentofnewhybridstrategyoralgorithm.Thefutureresearchshouldbefocusedondispatchingsystemcanbeused,maketheresearchtowardstherealdevelopmentisadvantageoustotheactualproductionofthefinalgoal.中文翻译车间作业调度(JSSP)技术问题简明综述l引言生产调度是CIMS研究领域生产管理的核心内容和关键技术,车间作业调度问题(JSSP)是最困难的约束组合优化问题和典型的NP难问题,其特点是没有一个有效的算法能在多项式时间内求出其最优解现代经济日益强化的竞争趋势和不断变化的用户需求要求生产者要重新估价生产制造策略,如更短的产品生产周期和零库存系统等,而JSSP生产环境最适宜满足现有经济和用户的需求利用有限的资源满足被加工任务的各种约束,并确定工件在相关设备上的加工顺序和时间,以保证所选择的性能指标最优,能够潜在地提高企业的经济效益,JSSP具有很多实际应用背景,开发有效而精确的调度算法是调度和优化领域重要的课题研究JSSP问题最初主要采用最优化方法,但计算规模不可能很大,且实用性差近年来,基于生物学、物理学、人工智能、神经网络、计算机技术及仿真技术的迅速发展,为调度问题的研究开辟了新的思路本文根据JSSP问题的大量文献,对研究理论与方法进行系统的分类并介绍这一领域的最新进展,讨论进一步的研究方向2JSSP问题的一般框架21问题描述JSSP问题可描述为:台机器(用集合表示)加个工件(用集合|表示),每个工mn件包含由多道工序组成的一个工序集合工件有预先确定的加工顺序,每道工序的加工时间t在给定的时间每个机器只能加工一个工件,并且每个工件只能由一台机器处理不同工件的加工顺序无限制,工序不允许中断;要求在可行调度中确定每个工序的开始时间使总完工时间最小,即ijsmaxC求解满足以上条件的工件加工顺序即构成JSSP调度问题流水作业调度问题(FSSP)是JSSP问题的特殊形式(即所有工件有相同的加工工序)此外目标函数可选取等待时间、流程时间和延期时间的平均值或者最大值等,或多个目标组合形成的多目标问题22JSSP的模型表示221整数规划(IP)模型整数规划模型由Baker提出,需要考虑两类约束:工件工序的前后约束和工序的非堵塞约束用和分别表示工件j在机器k上的加工时间和完工时间如果机器h上jktc的工件加工工序先于机器K(用表示),则有关系式;反之,如果,有。定义指示系数,为一个大数,则工序的前后约束表示为;工序的非阻塞约束表示为:,以为目MmaxC标的IP模型可以表示为:如果以平均流程时间为目标函数,可以改成。大数M在可行区域范围内的取值由VanHulle给出:223图模型JSSP的非连接图模型由Balas提出,N包含代表所有工序的节点,A包含连接同一工件的邻接工序的边,E包含连接同一机器上加工工序的非连接边,非连接边可以有两个可能方向调度过程将固定所有非连接边的方向,以确定同一机器上工序的顺序,并采用带有优先箭头的连接边取代非连接边3JSSP的研究方法通过对大量文献的分析将JSSP的研究方法分为两大类:最优化方法和近似启发式方法最优化方法主要包括混合整数线性规划(MILP)、分枝定界(B&B)法以及拉氏松弛法等;近似启发式最初是由于计算量小并且算法易实现而引入JSSP问题的,主要包括优先分派规则(PDRs)、人工智能(AI)、神经网络(NN)及邻域搜索法(NS)邻域搜索法又包括禁忌搜索(TS)、遗传算法(GA)和模拟退火(SA)等可以称之为亚启发式(Metaheuristic)的近似优化方法31最优化方法最优化方法是能够产生一个精确最优解的方法。Johnson最早提出的针对问题的Johnson规则,虽然是针对流水作业的求解方法,但它对以后的研究有很大的影响此后相继有利用多项式时间算法求解等特殊的JSSP问题,这些研究奠定了经典调度理论的基础在20世纪6O年代,针对整数规划问题的求解,提出利用更加复杂的数学结构消除隐含非最优解的搜索空间以提高搜索效率的枚举算法,分枝定界法(BB)在理论研究上有很大成果对一个的JSSP问题有种可能的解,因此大规模问题用完全枚举法mnmn!在计算上是不可能的7O年代后侧重计算复杂性方面的研究,Lenstra等证明了三种情况都是NP难问题Balas最早提出JSSP问题的B8出算法,此后Carlier等基于Jackson的剩余总加工时间最长(MWR)规则提出预占先调度(JPS),取得了较好的结果为克服数学表示和软件方法的局限性,近期Davis等提出基于数学规划的分解策略,将调度问题分解为多个子问题,分别考虑各子问题及其限制,提高了计算能力32近似启发式方法321优先分派规则最早的分派规则由Jackson和Smith等提出。JSSP的分配规则有SPT(最短加工时间)、LPT(最长加工时间)、MWR(剩余总加工时间最长)、IWR(剩余总加工时间最小)、MOR(剩余工序数最多)、LOR(剩余工序数最小)、EDD(最早交货期)和FCFS(选择同一机器上工件队列中的第一道工序)等Panwalkar等通过性能指标对113个分派规则归类总。wu。把调度规则分为三大类,即同作业信息相关的优先级规则、优
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省思茅市2025年上半年事业单位公开遴选试题含答案分析
- 河北省南宫市2025年上半年公开招聘村务工作者试题含答案分析
- 2025版石材荒料国际贸易代理及结算服务合同
- 2025年办公室装修室内装修污染治理合同
- 2025年度双方自愿离婚协议书编制与法律支持
- 2025版挖掘机租赁与施工安全监督合同
- 2025房产投资与招投标代理合作协议范本
- 2025版三方合作的城市绿地景观施工及维护合同
- 2025版房地产中介代理注册服务合同
- 河北省沧县2025年上半年公开招聘村务工作者试题含答案分析
- 民间配资双方协议书范本
- 就业能力展示-宣讲
- 神经内科常规用药课件
- 脑梗死取栓术后护理查房
- 国航股份新建配餐楼项目一期工程报告表
- 鸿合交互平板一体机培训
- 2024-2025中国商旅管理白皮书
- 儿童A族链球菌咽扁桃体炎临床诊疗专家共识(2025)解读
- 2025年高中数学湘教版选择性必修第一册详解答案
- 1.2 我们都是社会的一员 课件 内嵌视频 统编版八年级道德与法治上册
- 二氧化硅包覆金纳米粒子核壳结构的构筑及负载染料后的性能与应用探索
评论
0/150
提交评论