




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TrackingPowerSystemEquivalentCircuitParametersUsingSteadyStateMeasurementsS.A.Arefifar,StudentMember,IEEE,andW.Xu,Fellow,IEEEAbstract-Thispaperdealswiththeproblemofcalculatingthepowersystemequivalentcircuitparametersusinglocalmeasurementsatthepointofcommoncoupling(PCC).Forthispurpose,anewalgorithmbasedonthreesetsofmeasurementsisproposed.Theproposedalgorithmismorepracticalandhassomeadvantagesoverthepreviousmethods.Thenecessarymeasureddataforthisapproacharemagnitudeofvoltageandcurrentandthepowerfactor.Verificationstudies,includingsimulationandexperimentalresults,areprovidedtoverifythealgorithm.Moreover,somepracticalsituationssuchasnoiseconditionandslowvariationsofsystemparametersareinvestigated.IndexTermsEquivalentcircuit,Impedance,Measurementdata,Powersystem.I.INTRODUCTIONHEneedforsupplysystemimpedancedatahasbeenamatterofgreatconcernforbothsupplyauthoritiesandindustrialcustomers1.Duringrecentyears,theconstantincreaseofthepowerdemandedbyloadshasnotbeenfollowedbyanadequatedevelopmentoftheelectricalnetwork.Thereforethesupplysystemwilllikelybesubjectedtoincreasingdisturbancesinjectedbydirectlyconnectedloadssuchasarcfurnacesandpowerelectronicdevices.Insuchascenario,theutilityimpedancewillplayanimportantroleinthedisturbancepropagationandtheaccuratemodelingofthesupplysystemisthentheprerequisitefortheoptimizationofpowerquality.Today,powerelectronicdevicesarewidelyusedinpowersystems.Inordertofullyexploittheircapabilitiesandtoreducetheeffectsoftheirdrawbacks,particularlytolimitvoltagewaveformdistortions,theinteractionbetweenthepowerelectronicdevicesandthepowersystemtheyareconnectedtohastobemodeledindetails.TheTheveninequivalentcircuitsatfundamentalandharmonicfrequenciesusuallyprovideenoughinformationregardingtheeffectsofthechangesofthepowerelectronicdeviceoperatingconditionsonthesupplyvoltagewaveform2.Moreover,withtheknowledgeofTheveninequivalentparameters,seenattheloadbus,thevoltagestabilitymarginandmaximumloadabilityofthesystemcouldbeeasilyThisworkhasbeenfullysupportedbytheAlbertaIngenuityFundandiCORE.TheauthorsarewithElectricalandComputerEngineeringDepartmentofUniversityofAlberta,Canada(e-mail:arefifarece.ualberta.ca).estimated3.Severalmethodshavebeenproposedsofartotrackandestimatethepowersystemimpedance,whichhavetheirownadvantagesanddisadvantages.Someofthemarebasedonsynchronizedmeasurementsofwaveformsandsomerequirenonlinearloadtoestimatepowersystemequivalentcircuit.Thesemethodsbasicallyrefertotwodifferentapproaches.Thenon-invasiveapproachusestheexistingloadcurrentandvoltagevariationstoidentifythenetworkequivalentimpedance2-6,andtheinvasiveapproach,usestheswitchingtransientscausedbynetworkequipmentsuchascapacitorbanksorforcedsystemcurrentexcitationbyaharmonicgeneratingdevice7-12.Thenon-invasivemethodsareusuallysimplerandmoreapplicablesincetheydonotimposeanydisturbanceorwaveformdistortiontothesystem.Inthispaper,anewalgorithmbasedonthreesetsoflocalmeasurements,voltage,currentandpowerfactor,isproposedtocalculatethepowersystemequivalentcircuitparameters.Theadvantagesofthismethodoverpreviousonesare:1)Themethodisnon-invasiveanddoesnotimposeanydisturbancetothesystem2)Thereisnorestrictionontheloadmodel3)Thereisnorequirementtohavesynchronizedmeasurements.4)Theonlyrequiredinformation,fortheproposedalgorithmtoestimatepowersystemequivalentcircuitparametersarethesteady-stateRMSvaluesofvoltageandcurrentandthepowerfactorattheloadpoint.ThisinformationisalreadyavailableatthePCC.Themethodhasbeentheoreticallyvalidatedandsomecasestudiesandexperimentalresultsarepresentedtocheckthevalidityofthealgorithm.II.THEPROPOSEDALGORITHMThepowersystemasseenatthePCCcanbemodeledasanequivalentcircuitshowninFig.1.GsEsRsjXMV0IFig.1.PowersystemmodelseenatthepointofcommoncouplingThegoalistocalculatetheTheveninequivalentT108978-1-4244-1726-1/07/$25.00c2007IEEEparameters,and,whiletheonlyinformationavailablefromthesystemisourlocalmeasurementdata,whichare,andthepowerfactor(sEsRsXiViIiM).Theproposedmethodusesthreedifferentsetofmeasurementsatthreedifferentinstantsandisapplicableforeachphaseofathreephasesystem.Forabetterunderstandingofthealgorithm,weassumethatthesystemside,(,and),areconstantandloadsidehassomevariations,therefore,applyingKVL,thesystemequationsforasetofmeasurementdataattime,areasfollows:sEsRsX1t11110)(MGuVIjXREsss(1)Usingtheassumptionthat,andareconstantduringthemeasurements,forthesecondandthirdsetofV,IandsEsRsXMforthesamephaseandattimesand,wewillhavethesameequation.2t3tIfweseparatetherealandimaginarypartofequation(1),andrewritethemwewillhave:uuuuu)sin()cos(000)sin()cos(iiiiissisisVVIXREEMMGGi=1,2,3(2)Equations(2)canbewrittenforeachphaseofthethreephasesystemandrepresentsixequationsandsixunknowns.Theunknownparameters,foronephaseofthesystem,inthissetofequationsare:,sEsRsX1G,2G,3GAsexplainedbefore,forthisalgorithmthemeasurementsarenotnecessarilysynchronized,therefore,thevaluesofiGdependontheinstantofswitchingandcanhaveanyvalue.Sincethenumberofequationsandunknownsareequal,wecanproceedandsolvethesetofnonlinearequations.Thereareseveralmethodstosolvethissetofequations.InthispapertheNewtongradientmethodhasbeenusedtogetthesolutions.Usuallyatthepointofcommoncouplingtherearemeterstomeasurevoltage,active(P),andreactivepower(Q).UsingP,Qandvoltageateachmeasurement,wecancalculatethemagnitudeofcurrent,andthepowerfactor.ThereforetherequiredinformationforestimatingthesystemequivalentcircuitparametersisalreadyavailableandthereisnoneedtoinstallanyadditionaldataacquisitionsystematthePCC.Sincethevoltage,PandQrepresenttimeseries,thevaluesofsystemimpedanceandequivalentsystemsourcearealsoestimatedastimeseriesandcouldbedisplayedonthemeters(newgenerationofmeters).Theestimationprocedureisnotdependentontheloadmodelandisapplicablefordifferentkindofloads.TheproposedmodelforsomeoftheloadsinpowersystemisThevenin(Norton)equivalentcircuitthatmeanstheycanbemodeledasavoltage(current)sourceandaseries(parallel)impedance.ForTheveninequivalentcircuitloadmodels,suchasmotorsorharmonicgeneratingloads,thealgorithmcanbeusedtotracktheloadimpedanceaswell.Forthiskindofloadswecanwriteasimilarsetofequationsfortheloadsidetoestimateandasfollows:LVLZiiiLLiLVIjXRVMGu0)(i=1,2,3(3)Inequation(3),istheTheveninequivalentvoltagesourceoftheloadandistheTheveninequivalentimpedanceoftheloadseenatthepointofcommoncoupling.V,IandLVLLjXRMarethesamesetofmeasurementsusedforcalculationofsystemsideparameters.Theonlydifferenceisthedirectionofthecurrentthataddsanegativesigntotheequations.Usingthesamemeasurementdatatosolveequations(3),wecancalculatetheloadsideparameters.Inthefollowingsectionssomecasestudieshavebeendoneandsimulationandexperimentalresultsarepresentedtoshowthevalidityoftheproposedalgorithm.III.VERIFICATIONSTUDIESA.SimulationResultsTwodifferentloadmodels,impedanceandTheveninequivalentloadmodel,aresimulatedinthissectionandtheresultsarepresentedtoshowthevalidityoftheproposedalgorithm.1)ImpedanceLoadModelSomeoftheloadsinpowersystemarepassiveandcanbemodeledasanimpedance.Forsimulationofthiskindofloads,theloadhasbeenmodeledasavariableimpedance(1215jZLohms)andthesystemismodeledasshowninFig.1,(43jZsohmsand120sEVolts).Thesystemandloadsidehavechangedrandomlywithmaximumvariationof5%,andtheproposedalgorithm,usingequations(2),havebeenusedtoestimatethesystemequivalentcircuitparameters.Thesystemequivalentcircuitparametersseenfromaspecificbus(PCC)areusuallyconstant;howevertheymaychangeduetothevariationofsystemconfiguration,availabilityofgeneratingunitsorothersystemloadsthatarebehindthePCC.TheestimationofsystemparametersandtheiractualvaluesareplottedinFig.2.200739thNorthAmericanPowerSymposium(NAPS2007)1090501001502002503001234Rs(Ohms)050100150200250300246Xs(Ohms)05010015020025030050100150200Es(Volts)TimestepActualCalculatedFig.2.ActualandcalculatedsystemparametersAscanbeseen,theiterativealgorithmhasconvergedtotheexactvaluesofsystemimpedanceandequivalentvoltagesourcevalues.2)TheveninEquivalentCircuitLoadModelTheequivalentcircuitofsomeoftheloadsinpowersystemisTheveninorNortonloadmodel.Forsimulationofthiscase,thesystemandloadhavebeenmodeledasTheveninequivalentcircuitandtheparametersare:1215jZLohms,ohms,VoltsandVolts.Thesystemandloadsidehavechangedrandomlywithmaximumvariationof5%andtheproposedalgorithmhavebeenusedtoestimatethesystemandloadsideequivalentcircuitparameters.43jZs120sE110LVTheestimatedandactualvaluesofsystemandloadparametersareplottedintheFig.3andFig.4.0501001502002503001234Rs(Ohms)050100150200250300246Xs(Ohms)05010015020025030050100150Es(Volts)TimestepActualCalculatedFig.3.ActualandcalculatedsystemparametersAsexplainedbefore,theproposedalgorithmcanbeusedtocalculateloadsideequivalentcircuitparameters.Usingequations(3)forthesamesetofdata,wecancalculatetheloadsideparameters,asshowninFig.4.0501001502002503005101520RL(Ohms)0501001502002503005101520XL(Ohms)05010015020025030050100150VL(Volts)TimestepActualCalculatedFig.4.ActualandcalculatedloadparametersSimulationresultsshowthatforthiskindofloadstheproposedalgorithmprovidestheexactresultsforestimationofsystemandloadsideparameters.Usingtheleastsquareestimationwillhelpustoimprovetheresultsandcanceltheeffectofmeasurementnoise.B.PracticalIssuesOneoftheadvantagesofthismethodisthepossibilityofsolvingequation(2)forevensmalldisturbancesatthePCC.Ifthereisnonoiseortransientinthemeasuredvoltageandcurrent,andthesystemparametersdonotchangefortheperiodofmeasurement,theaccuracyofthismethodis100%.Inthefollowing,somepracticalissuessuchasnoiseconditionandslowvariationofsystemparametersareexplained.Forthispurpose,tocalculateeachplottedvalueinthefigures,300caseshavebeenrunandtheestimationerrorshavebeencalculatedforeachcaseandthentheaveragehasbeenplotted.Theerroriscalculatedasfollows:Error(%)=100)(30013001uiActualCalculatedActualiiiDataDataData(4)Thesameprocedurehasbeenfollowedforcalculationofaccuracyoftheresults.1)NoiseconditionsUsuallymeasurementsinpowersystemscontainnoise.Thisnoisecanhavedifferentsourcesbutthemostcommonsourceofit,isthemeasurementdevicesandswitchingtransients.InFig.5theaccuracyofcalculated,andisplottedasafunctionofmeasurementnoise.Themeasurementnoiseisthemaximumrandomnoiseaddedtothemeasuredvoltageandcurrentwaveforms.sEsRsX110200739thNorthAmericanPowerSymposium(NAPS2007)00.020.040.060.080.10.12708090100Rs(%)00.020.040.060.080.10.12708090100Xs(%)00.020.040.060.080.10.129095100105Es(%)MeasurementNoise(%)Fig.5.AccuracyofthemethodinnoiseconditionAscanbeseen,theaccuracyoftheproposedmethodisacceptablewhenthenoiselevelislow.Sincethemagnitudeofisusuallylargerthanand,theaccuracyofcalculatedismuchhigherthantheaccuracyofcalculatedand.Inthiscasethevariationofloadisrandomwiththemaximumof5%andtheaverageofandsEsRsXsEsRsXVIare0.8713%and2.7169%respectively.Ingeneraltheaccuracyofthealgorithminnoiseconditiondependsonthevariationofloadparameters.Themorechangesintheloadsideparameters,themoreaccuratearethecalculatedvaluesforsystemequivalentcircuitparameters.InFig.6foracertainlevelofnoise,theaccuracyofcalculated,andisplottedwhenthemaximumvariationofloadsideparameterschangesfrom0%to2%.sEsRsXFig.6showsthattheproposedalgorithmisnotabletodetectsystemparameterswhenthereisnovariationintheloadsideparameters;however,theaccuracyofthecalculatedresultsincreasesasthevariationofloadparametersrises.00.81.82050100Rs(%)00.81.82050100Xs(%)00.81.82050100Es(%)MaximumVariationofLoadParameters(%)Fig.6.AccuracyofthemethodinnoiseconditionForthiscasetheaverageofandVIchangesfrom0%to0.3455%andfrom0%to1.0888%respectively.Simulationsshowthattheproposedalgorithmworksundernoiseconditionifthemaximumnoiselevelislessthanthevariationofloadparameters.Moreoverusingleastsquareestimationmethodcansignificantlyreducethecalculationerror,causedbymeasurementnoises.2)SlowvariationconditionsInthissection,theaccuracyoftheproposedmethodisinvestigatedforthecasesthatthesystemsidehasslopevariation.Forthispurpose,thesystemequivalentimpedanceandvoltagesourcechangesimultaneouslywithdifferentvariationslopes.Tocalculatetheaccuracyforeachslope,300differentcaseshavebeensimulatedandFig.7showstheaverageoftheaccuracyofthosecases.051015708090100Rs(%)051015708090100Xs(%)0510159999.5100Es(%)SlopeofEs&Zs(%)Fig.7.AccuracyofthemethodinslopeconditionsAsanexamplethecalculationresultsforthecasethatthesystemparameterschangecontinuouslywith5%slopeareplottedinFig.8.05010015020025030051015Rs(Ohms)050100150200250300246810Xs(Ohms)05010015020025030050100150200Es(Volts)TimestepActualCalculatedFig.8.ActualandcalculatedsystemparametersinslopeconditionsThesimulationresultsshowthattheaccuracyofthemethodisacceptableintherangeofpowersystemvariations(lessthan10%)Therefore,thismethodcanalsobeusedforthecasesthatthesystemsideiscontinuouslyvarying.200739thNorthAmericanPowerSymposium(NAPS2007)111C.ExperimentalresultsInthissectionthepowersystemhasbeenmodeledasaresistanceinserieswithareactanceandthevoltagesourceisthesupplyvoltagesourceatthelabfacilitiesinUniversityofAlberta.Sincethemagnitudeofresistanceandreactanceofthemodeledsystemarehigherthanthesystembehindthem,thesupplysourceisconsideredasaninfinitebus.Every30secondsasnapshotofvoltageandcurrentcontaining12cyclesarecapturedandtheRMSvaluesneededforthecalculationsaretheaveragevaluesofthese12cyclesaccordingtoIECstandard13.Forthisexperimenttheload,whichisaninductiveandpassiveloadhasbeenchangedrandomlyfortheperiodofmeasurementsandthesystemside,whichareresistanceandinductancehaschangedonceafter15minutes.ThecalculatedandactualvaluesofsystemparametersareplottedinFig.9.010203040506001020Rs(Ohms)010203040506002040Xs(Ohms)01020304050600100200Es(Volts)TimestepCalculatedActualFig.9.ActualandcalculatedexperimentalsystemparametersThetimestepinFig.9is30seconds.Theresultsshowthattheproposedalgorithmworksproperlyforexperimentalresultsanditcanalsofollowanddetectthevariationofsystemparametersautomatically.Theleastsquareestimationcanbeappliedtoimprovetheaccuracyofcalculatedresults.IV.ACKNOWLEDGMENTTheauthorsgratefullyacknowledgetheAlbertaIngenuityFund,iCOREandNSERCforthesupportprovidedduringthiswork.V.CONCLUSIONInthispapertheproblemofestimatingthepowersystemequivalentcircuitparameters,usinglocalmeasurementsatthepointofcommoncoupling(PCC),hasbeensolved.Forthispurposeanewiterative-basedalgorithmbasedonthreesetsofmeasurementsisproposedtoestimatethesystemparameters.Theadvantageoftheproposedalgorithmcomparingtotheonesavailableinliterature,isthatthismethoddoesnotdependontheloadmodelandalsothereisnoneedtohavesynchronizedmeasurements.TheonlyrequiredinformationforthismethodistheRMSvaluesofvoltage,current,andthepowerfactor.ThisinformationcaneasilybeobtainedfromthemetersthatarealreadyinstalledatthePCCandthereisnoneedtoinstallanyadditionaldataacquisitionsystemsthatareusuallycostly.SimulationresultsshowthatinnoiseconditiontheaccuracyofthemethodincreaseswhenthevariationofvoltageandcurrentatPCCincreases.Theproposedmethodalsoworksunderslopevariationsofsystemparameters.Experimentalresultsareprovidedforfurtherverificationofthealgorithm,whichshowthatthismethodcanbeusedinpracticalsituationsandtheresultsmatchtheactualvalues.Theproposedalgorithmcanalsobeusedforcalculationofharmonicimpedancesaswell.Inthiscasewecandeterminetheharmoniccontributionofutilitiesandcustomersforthetotalharmonicdistortionatthepointofcommoncouplingandalsotheharmonicimpedancesofloadandsystem,thatnoappropriateapproachhasbeenproposedsofar.VI.REFERENCES123456789101112A.DeOliveira,J.C.DeOliveira,J.W.andM.S.“ResendeMiskulin,PracticalapproachesforACsystemharmonicimpedancemeasurements”,IEEETrans.PowerDelivery,vol.6,issue4,pp.1721-1726,Oct.1991.G.Fusco,A.Losi,andM.Russo,“ConstrainedLeastSquaresMethodsforParameterTrackingofPowerSystemSteady-StateEquivalentCircuits”,IEEETrans.PowerDelivery,vol.15,issue3,pp.1073-1080,2000.K.Vu,M.M.Begovic,D.Novosel,andM.M.Saha,“Useoflocalmeasurementstoestimatevoltage-stabilitymargin”,IEEETrans.PowerSystems,vol.14,issue3,pp.1029-1035,Aug.1999.M.BahadornejadandG.Ledwich,“SystemTheveninImpedanceEstimationUsingSignalProcessingonLoadBusData,”Proceedingsof6thInternationalConferenceonAdvancesinPowerSystemControl,OperationandManagement,APSCOM,pp.274279,Nov.2003.T.andW.“Tayjasanant,ChunLiXu,Aresistancesign-basedmethodforvoltagesagsourcedetection”,IEEETrans.PowerDelivery,vol.20,no.4,Oct.2005.K.Vu,andD.Novosel,“Voltageinstabilitypredictor(VIP)-methodandsystemforperformingadaptivecontroltoimprovevoltagestabilityinpowersystems”,U.S.Patent6219591,May15,1998.M.Sumner,B.Palethorpe,andD.W.P.Thomas,“ImpedanceMeasurementforImprovedPowerQualityPart1:TheMeasurementTechnique”IEEETrans.PowerDelivery,vol.19,n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省攀枝花市属高中2026届化学高三第一学期期中联考模拟试题含解析
- 情景对话问路课件
- 幼儿园六一戏水活动方案
- 2026届安徽省庐巢六校联盟高一化学第一学期期末统考模拟试题含解析
- 托班亲子游活动方案
- 三防安全工作方案
- 中秋节晚会的策划方案
- 幼儿园户外科普活动方案
- 吉林省延边二中2026届高三化学第一学期期中学业水平测试试题含解析
- 河南省豫南市级示范性高中2026届高一化学第一学期期末质量检测模拟试题含解析
- 2025至2030中国会议平板行业发展趋势分析有效策略与实施路径评估报告
- 2025年《工会基础知识》试题库及答案
- 2025年江苏省靖江市辅警招聘考试试题题库及答案详解(名师系列)
- 机械加工投标技术方案(3篇)
- 2025年高考化学试卷真题完全解读(河北卷)
- 成都东部集团有限公司招聘考试真题2024
- 海外房产投资项目方案(3篇)
- 肺癌的护理新进展
- 2025年党建知识应知应会题库及答案
- JJG 597-2025交流电能表检定装置检定规程
- DBJT 13-318-2025建筑施工盘扣式钢管脚手架安全技术标准
评论
0/150
提交评论