2015年全国中考数学试卷解析分类汇编(第二期)专题29 平移旋转与对称.doc_第1页
2015年全国中考数学试卷解析分类汇编(第二期)专题29 平移旋转与对称.doc_第2页
2015年全国中考数学试卷解析分类汇编(第二期)专题29 平移旋转与对称.doc_第3页
2015年全国中考数学试卷解析分类汇编(第二期)专题29 平移旋转与对称.doc_第4页
2015年全国中考数学试卷解析分类汇编(第二期)专题29 平移旋转与对称.doc_第5页
免费预览已结束,剩余61页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

为您服务教育网/平移旋转与对称一.选择题1(2015鄂州, 第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将ABE沿AE折叠,点B落在点F处,连接FC,则sinECF=() A B C D 考点: 翻折变换(折叠问题)分析: 过E作EHCF于H,由折叠的性质得BE=EF,BEA=FEA,由点E是BC的中点,得到CE=BE,得到EFC是等腰三角形,根据等腰三角形的性质得到FEH=CEH,推出ABEEHC,求得EH=,结果可求sinECF=解答: 解:过E作EHCF于H,由折叠的性质得:BE=EF,BEA=FEA,点E是BC的中点,CE=BE,EF=CE,FEH=CEH,AEB+CEH=90,在矩形ABCD中,B=90,BAE+BEA=90,BAE=CEH,B=EHC,ABEEHC,AE=10,EH=,sinECF=,故选D点评: 本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质以及勾股定理2(2015湖北, 第12题3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是() A AF=AE B ABEAGF C EF=2 D AF=EF考点: 翻折变换(折叠问题)分析: 设BE=x,表示出CE=8x,根据翻折的性质可得AE=CE,然后在RtABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得AEF=CEF,根据两直线平行,内错角相等可得AFE=CEF,然后求出AEF=AFE,根据等角对等边可得AE=AF,过点E作EHAD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解解答: 解:设BE=x,则CE=BCBE=8x,沿EF翻折后点C与点A重合,AE=CE=8x,在RtABE中,AB2+BE2=AE2,即42+x2=(8x)2解得x=3,AE=83=5,由翻折的性质得,AEF=CEF,矩形ABCD的对边ADBC,AFE=CEF,AEF=AFE,AE=AF=5,A正确;在RtABE和RtAGF中,ABEAGF(HL),B正确;过点E作EHAD于H,则四边形ABEH是矩形,EH=AB=4,AH=BE=3,FH=AFAH=53=2,在RtEFH中,EF=2,C正确;AEF不是等边三角形,EFAE,故D错误;故选:D点评: 本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口3(2015宜昌,第2题3分)下列剪纸图案中,既是轴对称图形,又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误故选:A点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合4(2015聊城,第12题3分)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是O面积的()ABCD考点:翻折变换(折叠问题);扇形面积的计算.分析:作ODAB于点D,连接AO,BO,CO,求出OAD=30,得到AOB=2AOD=120,进而求得AOC=120,再利用阴影部分的面积=S扇形AOC得出阴影部分的面积是O面积的解答:解:作ODAB于点D,连接AO,BO,CO,OD=AO,OAD=30,AOB=2AOD=120,同理BOC=120,AOC=120,阴影部分的面积=S扇形AOC=O面积故选:B点评:本题主要考查了折叠问题,解题的关键是确定AOC=1205. (2015江苏扬州第6题3分)如图,在平面直角坐标系中,点B、C、E在y轴上,RtABC 经过变换得到RtODE,若点C的坐标为(0,1),AC=2,则这种 变换可以是 ( ) A、ABC绕点C顺时针旋转90,再向下平移3 B、ABC绕点C顺时针旋转90,再向下平移1 C、ABC绕点C逆时针旋转90,再向下平移1 D、ABC绕点C逆时针旋转90,再向下平移36. (2015江苏常州第3题2分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是A B C D7、(2015年浙江舟山2,3分)下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有【 】A. 1个 B. 2个 C. 3个 D. 4个【答案】B.【考点】中心对称图形.【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,因为第一、三个图形沿中心旋转180度后与原图重合,而第二、四个图形沿中心旋转180度后与原图不重合,所以,四个图形中属于中心对称图形的有2个. 故选B.8(2015东营,第7题3分)如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形,投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是() A 1 B C D 考点: 概率公式;轴对称图形;中心对称图形专题: 计算题分析: 先根据轴对称图形和中心对称图形的定义得到圆和菱形既是轴对称图形又是中心对称图形,然后根据概率公式求解解答: 解:投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率=故选D点评: 本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数也考查了轴对称图形和中心对称图形9.(2015山东德州,第6题3分)如图,在ABC中,CAB=65,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为()A35B40C50D65考点:旋转的性质.分析:根据两直线平行,内错角相等可得ACC=CAB,根据旋转的性质可得AC=AC,然后利用等腰三角形两底角相等求CAC,再根据CAC、BAB都是旋转角解答解答:解:CCAB,ACC=CAB=65,ABC绕点A旋转得到ABC,AC=AC,CAC=1802ACC=180265=50,CAC=BAB=50故选C点评:本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键10.(2015山东莱芜,第6题3分)下列图形中,是轴对称图形,但不是中心对称图形的是() A B C D 考点: 中心对称图形;轴对称图形.分析: 根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解解答: 解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确故选D点评: 本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合11.(2015山东泰安,第15题3分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将OAB沿直线OA的方向平移至OAB的位置,此时点A的横坐标为3,则点B的坐标为()A(4,2)B(3,3)C(4,3)D(3,2)考点:坐标与图形变化-平移;等边三角形的性质.分析:作AMx轴于点M根据等边三角形的性质得出OA=OB=2,AOB=60,在直角OAM中利用含30角的直角三角形的性质求出OM=OA=1,AM=OM=,则A(1,),直线OA的解析式为y=x,将x=3代入,求出y=3,那么A(3,3),由一对对应点A与A的坐标求出平移规律,再根据此平移规律即可求出点B的坐标解答:解:如图,作AMx轴于点M正三角形OAB的顶点B的坐标为(2,0),OA=OB=2,AOB=60,OM=OA=1,AM=OM=,A(1,),直线OA的解析式为y=x,当x=3时,y=3,A(3,3),将点A向右平移2个单位,再向上平移2个单位后可得A,将点B(2,0)向右平移2个单位,再向上平移2个单位后可得B,点B的坐标为(4,2),故选A点评:本题考查了坐标与图形变化平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减也考查了等边三角形的性质,含30角的直角三角形的性质求出点A的坐标是解题的关键12.(2015四川成都,第9题3分)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()Ay=(x+2)23By=(x+2)2+3Cy=(x2)2+3Dy=(x2)23考点:二次函数图象与几何变换.分析:先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(2,3),然后根据顶点式写出平移后的抛物线解析式解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(2,3),所以平移后的抛物线解析式为y=(x+2)23故选:A点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式13(2015长沙,第4题3分)下列图形中,是轴对称图形,但不是中心对称图形的是() A B C D 考点: 中心对称图形;轴对称图形分析: 根据轴对称图形和中心对称图形的定义可直接得到答案解答: 解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B点评: 此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合14(2015本溪,第4题3分)下列图案中既是轴对称图形,又是中心对称图形的是() A B C D 考点: 中心对称图形;轴对称图形分析: 根据轴对称图形与中心对称图形的概念求解解答: 解:A、不是轴对称图形,也不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形故选B点评: 本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识15(2015本溪,第9题3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(2,0),与x轴夹角为30,将ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k0)上,则k的值为() A 4 B 2 C D 考点: 翻折变换(折叠问题);待定系数法求反比例函数解析式.分析: 设点C的坐标为(x,y),过点C作CDx轴,作CEy轴,由折叠的性质易得CAB=OAB=30,AC=AO=2,ACB=AOB=90,用锐角三角函数的定义得CD,CE,得点C的坐标,易得k解答: 解:设点C的坐标为(x,y),过点C作CDx轴,作CEy轴,将ABO沿直线AB翻折,CAB=OAB=30,AC=AO=2,ACB=AOB=90,CD=y=ACsin60=2=,ACB=DCE=90,BCE=ACD=30,BC=BO=AOtan30=2=,CE=x=BCcos30=1,点C恰好落在双曲线y=(k0)上,k=xy=1=,故选D点评: 本题主要考查了翻折的性质,锐角三角函数,反比例函数的解析式,理解翻折的性质,求点C的坐标是解答此题的关键16(2015营口,第10题3分)如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是() A 25 B 30 C 35 D 40考点: 轴对称-最短路线问题分析: 分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,COA=POA;PN=DN,OP=OD,DOB=POB,得出AOB=COD,证出OCD是等边三角形,得出COD=60,即可得出结果解答: 解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:点P关于OA的对称点为C,关于OB的对称点为D,PM=CM,OP=OC,COA=POA;点P关于OB的对称点为D,PN=DN,OP=OD,DOB=POB,OC=OP=OD,AOB=COD,PMN周长的最小值是5cm,PM+PN+MN=5,CM+DN+MN=5,即CD=5=OP,OC=OD=CD,即OCD是等边三角形,COD=60,AOB=30;故选:B点评: 本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键17.(2015曲靖第8题3分)如图,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,连接AF,则OFA的度数是()A15B20C25D30考点:旋转的性质.分析:先根据正方形的性质和旋转的性质得到AOF的度数,OA=OF,再根据等腰三角形的性质即可求得OFA的度数解答:解:正方形OABC绕着点O逆时针旋转40得到正方形ODEF,AOF=90+40=130,OA=OF,OFA=(180130)2=25故选:C点评:考查了旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等同时考查了正方形的性质和等腰三角形的性质18(2015温州第4题4分)下列选项中的图形,不属于中心对称图形的是()A等边三角形B正方形C正六边形D圆考点:中心对称图形.分析:根据中心对称图形的概念求解解答:解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误故选A点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合19. (2015年重庆B第2题4分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )【答案】B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.A和C为轴对称图形;B为中心对称图形;D既不是轴对称图形,也不是中心对称图形.考点:中心对称图形.20.(2015四川遂宁第6题4分)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是()A2B3C4D5考点:中心对称图形.分析:根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析解答:解:正方形、矩形、菱形、平行四边形是中心对称图形,共4个,故选:C点评:此题主要考查了中心对称图形,关键是掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合21.(2015四川凉山州第9题4分)在平面直角坐标系中,点P(3,2)关于直线y=x对称点的坐标是()A(3,2)B(3,2)C(2,3)D(3,2)考点:坐标与图形变化-对称.分析:根据直线y=x是第一、三象限的角平分线,和点P的坐标结合图形得到答案解答:解:点P关于直线y=x对称点为点Q,作APx轴交y=x于A,y=x是第一、三象限的角平分线,点A的坐标为(2,2),AP=AQ,点Q的坐标为(2,3)故选:C点评:本题考查的是坐标与图形的变换,掌握轴对称的性质是解题的关键,注意角平分线的性质的应用22(3分)(2015桂林)(第9题)如图,在ABC中,AB=10,AC=8,BC=12,ADBC于D,点E、F分别在AB、AC边上,把ABC沿EF折叠,使点A与点D恰好重合,则DEF的周长是()A14B15C16D17考点:翻折变换(折叠问题)分析:根据折叠的性质可得EF为ABC的中位线,AEFDEF,分别求出EF、DE、DF的长度,即可求得周长解答:解:由折叠的性质可得,AEFDEF,EF为ABC的中位线,AB=10,AC=8,BC=12,AE=ED=5,AF=FC=4,EF=6,DEF的周长=5+4+6=15故选B点评:本题考查了翻折变换,解答本题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等23(3分)(2015毕节市)(第6题)如图,将四个“米”字格的正方形内涂上阴影,其中既是轴对称图形,又是中心对称图形的是() A B C D 考点: 中心对称图形;轴对称图形分析: 根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别结合选项判断即可得出答案解答: 解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形也是中心对称图形,故本选项正确;C、是中心对称图形,但不是轴对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误故选:B点评: 本题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合24(3分)(2015毕节市)(第8题)如图,已知D为ABC边AB的中点,E在AC上,将ABC沿着DE折叠,使A点落在BC上的F处若B=65,则BDF等于() A 65 B 50 C 60 D 57.5考点: 翻折变换(折叠问题)分析: 先根据图形翻折不变性的性质可得AD=DF,根据等边对等角的性质可得B=BFD,再根据三角形的内角和定理列式计算即可求解解答: 解:DEF是DEA沿直线DE翻折变换而来,AD=DF,D是AB边的中点,AD=BD,BD=DF,B=BFD,B=65,BDF=180BBFD=1806565=50故选:B点评: 本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键25(4分)(2015黔南州)(第11题)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B;连接AB与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是() A 转化思想 B 三角形的两边之和大于第三边 C 两点之间,线段最短 D 三角形的一个外角大于与它不相邻的任意一个内角考点: 轴对称-最短路线问题分析: 利用两点之间线段最短分析并验证即可即可解答: 解:点B和点B关于直线l对称,且点C在l上,CB=CB,又AB交l与C,且两条直线相交只有一个交点,CB+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边故选D点评: 此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点26(4分)(2015铜仁市)(第5题)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,不是中心对称图形故错误;B、是轴对称图形,不是中心对称图形故错误;C、是轴对称图形,也是中心对称图形故正确;D、是轴对称图形,不是中心对称图形故错误故选C点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合27(2015甘肃庆阳,第2题,3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD考点:轴对称图形.分析:根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴解答:解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意故选:A点评:本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合28(2015甘肃天水,第7题,4分)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C、D的位置,经测量得EFB=65,则AED的度数是() A 65 B 55 C 50 D 25考点: 平行线的性质;翻折变换(折叠问题)分析: 先根据平行线的性质求出DEF的度数,再由图形翻折变换的性质求出DED的度数,根据补角的定义即可得出结论解答: 解:ADBC,EFB=65,DEF=65,DED=2DEF=130,AED=180130=50故选C点评: 本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等29. (2015黄石第6题,3分)在下列艺术字中既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,不是中心对称图形故错误;B、是轴对称图形,不是中心对称图形故错误;C、不是轴对称图形,也不是中心对称图形故错误;D、是轴对称图形,也是中心对称图形故正确故选D点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合30.(2015湖北省随州市,第9 题3分)在直角坐标系中,将点(2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A(4,3)B(4,3)C(0,3)D(0,3)考点:关于原点对称的点的坐标;坐标与图形变化-平移.分析:根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案解答:解:在直角坐标系中,将点(2,3)关于原点的对称点是(2,3),再向左平移2个单位长度得到的点的坐标是(0,3),故选:C点评:本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减31.(2015湖北省潜江市、天门市、仙桃市、江汉油田第9 题3分)在下面的网格图中,每个小正方形的边长均为1,ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(1,1),(1,2),将ABC绕点C顺时针旋转90,则点A的对应点的坐标为()A(4,1)B(4,1)C(5,1)D(5,1)考点:坐标与图形变化-旋转.专题:几何变换分析:先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出ABC绕点C顺时针旋转90后点A的对应点的A,然后写出点A的坐标即可解答:解:如图,A点坐标为(0,2),将ABC绕点C顺时针旋转90,则点A的对应点的A的坐标为(5,1)故选D点评:本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,18032(2015济南,第7题3分)下列图标既是轴对称图形又是中心对称图形的是()A B C D 考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称的概念对各选项分析判断即可得解解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、既不是轴对称图形,也不是中心对称图形,故本选项错误故选C点评:本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合33(2015济南,第1题3分)如图,在平面直角坐标系中,ABC的顶点都在方格纸的格点上,如果将ABC先向右平移4个单位长度,在向下平移1个单位长度,得到A1B1C1,那么点A的对应点A1的坐标为()A(4,3)B(2,4)C(3,1)D(2,5)考点:坐标与图形变化平移分析:根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可解答:解:由坐标系可得A(2,6),将ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(2+4,61),即(2,5),故选:D点评:此题主要考查了坐标与图形的变化平移,关键是掌握点的坐标的变化规律34(2015济南,第15题3分)如图,抛物线y=2x2+8x6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A2m B3m C3m2D3m 考点:抛物线与x轴的交点;二次函数图象与几何变换分析:首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案解答:解:令y=2x2+8x6=0,即x24x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=2(x4)2+2(3x5),当y=x+m1与C2相切时,令y=x+m1=y=2(x4)2+2,即2x215x+30+m1=0,=8m115=0,解得m1= ,当y=x+m2过点B时,即0=3+m2,m2=3,当3m 时直线y=x+m与C1、C2共有3个不同的交点,故选D点评:本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度35(2015青岛,第3题3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误故选:B点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合36.(2015烟台,第2题3分) 剪纸是我国最古老的民间艺术之一,被列入第四批人类非物质文化遗产代表作名录,下列剪纸作品中,是中心对称图形但不是轴对称图形的是( )考点:中心对称与轴对称分析:如果一个图形沿着某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形;如果一个图形绕着某一点旋转180度后能够与自身重合,则这个图形就是中心对称图形解答:故选D点评:轴对称是关于直线对称,而中心对称是关于点的对称37.(2015枣庄,第9题3分)如图,边长为1的正方形ABCD绕点A逆时针旋转45后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()ABCD1考点:旋转的性质.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出C1AB1=AC1B1=45,求出DAB1=45,推出A、D、C1三点共线,在RtC1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可解答:解:连接AC1,四边形AB1C1D1是正方形,C1AB1=90=45=AC1B1,边长为1的正方形ABCD绕点A逆时针旋转45后得到正方形AB1C1D1,B1AB=45,DAB1=9045=45,AC1过D点,即A、D、C1三点共线,正方形ABCD的边长是1,四边形AB1C1D1的边长是1,在RtC1D1A中,由勾股定理得:AC1=,则DC1=1,AC1B1=45,C1DO=90,C1OD=45=DC1O,DC1=OD=1,SADO=ODAD=,四边形AB1OD的面积是=2=1,故选:D点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键38(2015枣庄,第10题3分)如图,在44的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形)若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A2种B3种C4种D5种考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可解答:解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种故选:C点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键39. (2015江苏南通,第4题3分)下列图形中既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误故选:A点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合40. (2015江苏泰州,第5题3分)如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到,则点P的坐标为()A(0,1)B(1,1)C(0,1)D(1,0)考点:坐标与图形变化-旋转.分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心解答:解:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,1),根据旋转变换的性质,点(1,1)即为旋转中心故旋转中心坐标是P(1,1)故选B点评:本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键41. (2015江苏盐城,第2题3分)如图四个图形中,是中心对称图形的为()A BCD考点:中心对称图形分析:根据中心对称图形的概念求解解答:解:A、是轴对称图形,不是中心对称图形故错误;B、是轴对称图形,不是中心对称图形故错误;C、是中心对称图形故正确;D、是轴对称图形,不是中心对称图形故错误故选:C点评:本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合二.填空题1(2015青岛,第12题3分)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(1,1),把正方形ABCD绕原点O逆时针旋转45得正方形ABCD,则正方形ABCD与正方形ABCD重叠部分所形成的正八边形的边长为22考点:旋转的性质;坐标与图形性质;正方形的性质;正多边形和圆分析:如图,首先求出正方形的边长、对角线长;进而求出OA的长;证明AMN为等腰直角三角形,求出AN的长度;同理求出DM的长度,即可解决问题解答:解:如图,由题意得:正方形ABCD的边长为2,该正方形的对角线长为2,OA=;而OM=1,AM=1;由题意得:MAN=45,AMN=90,MNA=45,MN=AM=;由勾股定理得:AN=2;同理可求DM=2,MN=2(42)=22,正八边形的边长为22点评:该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键2.(2015枣庄,第18题4分)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将AOB沿过点B的直线折叠,使点A落在x轴上的点A处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为y=x+考点:翻折变换(折叠问题);待定系数法求一次函数解析式.专题:计算题分析:在RtOAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA=BA=5,CA=CA,则OA=BAOB=2,设OC=t,则CA=CA=4t,在RtOAC中,根据勾股定理得到t2+22=(4t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式解答:解:A(0,4),B(3,0),OA=4,OB=3,在RtOAB中,AB=5,AOB沿过点B的直线折叠,使点A落在x轴上的点A处,BA=BA=5,CA=CA,OA=BAOB=53=2,设OC=t,则CA=CA=4t,在RtOAC中,OC2+OA2=CA2,t2+22=(4t)2,解得t=,C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得,直线BC的解析式为y=x+故答案为:y=x+点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理和待定系数法求一次函数解析式4(2015湖北省咸宁市,第14题3分)如图,在平面直角坐标系中,点A的坐标为(0,6),将OAB沿x轴向左平移得到OAB,点A的对应点A落在直线y=x上,则点B与其对应点B间的距离为8考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A的纵坐标,根据点A落在直线y=x上,求出点A的横坐标,确定OAB沿x轴向左平移的单位长度即可得到答案解答:解:由题意可知,点A移动到点A位置时,纵坐标不变,点A的纵坐标为6,x=6,解得x=8,OAB沿x轴向左平移得到OAB位置,移动了8个单位,点B与其对应点B间的距离为8,故答案为:8点评:本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键4(2015湖北省随州市,第16 题3分)在ABCD中,ABBC,已知B=30,AB=2,将ABC沿AC翻折至ABC,使点B落在ABCD所在的平面内,连接BD若ABD是直角三角形,则BC的长为4或6考点:翻折变换(折叠问题);平行四边形的性质.分析:在ABCD中,ABBC,要使ABD是直角三角形,有两种情况:BAD=90或ABD=90,画出图形,分类讨论即可解答:解:当BAD=90ABBC时,如图1,AD=BC,BC=BC,AD=BC,ACBD,BAD=90,BGC=90,B=30,AB=2,ABC=30,GC= BC= BC,G是BC的中点,在R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论