




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数公式1相关概念三角函数的标准英文读音音标正弦:sine(简写sin)sain余弦:cosine(简写cos)kusain正切:tangent(简写tan)tndnt余切:cotangent(简写cot)kutndnt正割:secant(简写sec)si:knt余割:cosecant(简写csc)kausi:knt正矢:versine(简写versin)v:sain余矢:versed cosine(简写vercos)v:s:dkusain直角三角函数直角三角函数 (是锐角)三角关系倒数关系:商的关系:平方关系:2三角规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。三角函数本质:根据三角函数定义推导公式根据右图,有sin=y/ r; cos=x/r; tan=y/x; cot=x/y深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为,BOD为,旋转AOB使OB与OD重合,形成新AOD。A(cos,sin),B(cos,sin),A(cos(-),sin(-)OA=OA=OB=OD=1,D(1,0)cos(-)-12+sin(-)2=(cos-cos)2+(sin-sin)2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)单位圆定义单位圆六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 /2弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:x2+y2=1图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角,并与单位圆相交。这个交点的x和y坐标分别等于 cos和 sin。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin=y/1 和 cos=x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。3特殊值sin30=1/2sin45=2/2sin60=3/2cos30=3/2cos45=2/2cos60=1/2tan30=3/3tan45=1tan60=31cot30=3cot45=1cot60=3/3sin15=(6-2)/4sin75=(6+2)/4cos15=(6+2)/4cos75=(6-2)/4(这四个可根据sin(4530)=sin45cos30cos45sin30得出)sin18=(5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)4重要定理正弦定理正弦定理:在ABC中,a / sin A = b / sin B = c / sin C = 2R其中,R为ABC的外接圆的半径。余弦定理余弦定理:在ABC中,b2 = a2 + c2 - 2accos 。其中,为边a与边c的夹角。5常用公式诱导公式三角函数的诱导公式(六公式)公式一:sin(+k*2)=sincos(+k*2)=costan(+k*2)=tan公式二:sin(+) = -sincos(+) = -costan(+)=tan公式三:sin(-) = -sincos(-) = costan (-)=-tan公式四:sin(-) = sincos(-) = -costan(-) =-tan公式五:sin(/2-) = coscos(/2-) =sin由于/2+=-(/2-),由公式四和公式五可得公式六:sin(/2+) = coscos(/2+) = -sin诱导公式 记背诀窍:奇变偶不变,符号看象限。和(差)角公式三角和公式sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincos和差化积积化和差倍角公式二倍角正弦余弦正切三倍角三倍角公式推导sin(3a)3sina-4sin3a=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a(2cos2a-1)cosa-2(1-cos2a)cosa=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosasin3a4sinasin(60+a)sin(60-a)=3sina-4sin3a=4sina(3/4-sin2a)=4sina(3/2)-sina(3/2)+sina=4sina(sin60+sina)(sin60-sina)=4sina*2sin(60+a)/2cos(60-a)/2*2sin(60-a)/2cos(60+a)/2=4sinasin(60+a)sin(60-a)cos3a4cosacos(60-a)cos(60+a)=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosacos2a-(3/2)2=4cosa(cosa-cos30)(cosa+cos30)=4cosa*2cos(a+30)/2cos(a-30)/2*-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)tan3atanatan(60-a)tan(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)三倍角sin3=3sin-4sin3 =4sinsin(/3+)sin(/3-)cos3=4cos3 -3cos=4coscos(/3+)cos(/3-)tan3=tan()*(-3+tan()2)/(-1+3*tan()2)=tan a tan(/3+a) tan(/3-a)其他多倍角四倍角sin4A=-4*(cosA*sinA*(2*sinA2-1)cos4A=1+(-8*cosA2+8*cosA4)tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4)五倍角sin5A=16sinA5-20sinA3+5sinAcos5A=16cosA5-20cosA3+5cosAtan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2)cos6A=(-1+2*cosA)*(16*cosA4-16*cosA2+1)tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA-15*tanA4+tanA6)七倍角sin7A=-(sinA*(56*sinA2-112*sinA4-7+64*sinA6)cos7A=(cosA*(56*cosA2-112*cosA4+64*cosA6-7)tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6)八倍角sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1)cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2)tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8)九倍角sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3)cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3)tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8)十倍角sin10A = 2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4)cos10A = (-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1)tan10A = -2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10)N倍角根据棣莫弗定理,(cos+ i sin)n = cos(n)+ i sin(n)为方便描述,令sin=s,cos=c考虑n为正整数的情形:cos(n)+ i sin(n) = (c+ i s)n = C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n- 4)*(i s)4 + . +C(n,1)*c(n-1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . =;比较两边的实部与虚部实部:cos(n)=C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n-4)*(i s)4 + . i*虚部:i*sin(n)=C(n,1)*c(n-1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . 对所有的自然数n:cos(n):公式中出现的s都是偶次方,而s2=1-c2(平方关系),因此全部都可以改成以c(也就是cos)表示。sin(n):当n是奇数时:公式中出现的c都是偶次方,而c2=1-s2(平方关系),因此全部都可以改成以s(也 就是sin)表示。当n是偶数时:公式中出现的c都是奇次方,而c2=1-s2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cos)的一次方无法消掉。例. c3=c*c2=c*(1-s2),c5=c*(c2)2=c*(1-s2)2)特殊公式(sina+sin)*(sina-sin)=sin(a+)*sin(a-)证明:(sina+sin)*(sina-sin)=2 sin(+a)/2 cos(a-)/2 *2 cos(+a)/2 sin(a-)/2=sin(a+)*sin(a-)坡度公式我们通常把坡面的铅直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.半角公式万能公式6辅助角公式注:该公式又称收缩公式 / 强提公式 / 化一公式 等asin +bcos =(a2+b2)sin(+),其中tan =b/aasinA+bcosB=根号下a方+b方(根号下a方+b方分之asinA+根号下a方+b方分之bcosB) 令根号下a方+b方分之a=cosC 则根号下a方+b方分之b=sinC asinA+bcosB=根号下a方+b方(sinAcosC+cosBsinC)=根号下a方+b方sin(A+C)7双曲函数sh a = ea-e(-a)/2ch a = ea+e(-a)/2th a = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)= sincos(2k+)= costan(2k+)= tancot(2k+)= cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)= -sincos(+)= -costan(+)= tancot(+)= cot公式三:任意角与 -的三角函数值之间的关系:sin(-)= -sincos(-)= costan(-)= -tancot(-)= -cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)= sincos(-)= -costan(-)= -tancot(-)= -cot公式五:利用公式-和公式三可以得到2-与的三角函数值之间的关系:sin(2-)= -sincos(2-)= costan(2-)= -tancot(2-)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= coscos(/2+)= -sintan(/2+)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州消防安全知识培训课件
- 情感剧创作思路探究
- 2026届江西省玉山县二中高一化学第一学期期中检测试题含解析
- 2026届江苏南京玄武区化学高一上期中调研模拟试题含解析
- 同学聚会活动背景图片策划方案
- 中继间技术措施的方案
- 清明节策划活动的方案
- 网球教学考试题及答案
- 现代日语面试题及答案
- 日语阅读试题及答案
- 2024至2030年中国品牌战略咨询服务市场现状研究分析与发展前景预测报告
- 2022版新《物理》义务教育课程标准教师培训测试题附答案
- 辽宁省丹东市2023-2024学年八年级下学期期末数学试卷(含答案)
- TSG+11-2020锅炉安全技术规程
- 从高考改卷谈对物理教学的几点启示
- DB32-T 4757-2024 连栋塑料薄膜温室建造技术规范
- 个人征信查询授权书范本
- 2024新版实习律师协议
- 县乡教师选调进城考试《教育心理学》题库含完整答案【全优】
- 2024年莆田辖区新华书店招聘笔试参考题库附带答案详解
- 初中化学酸碱中和反应省公开课一等奖全国示范课微课金奖课件
评论
0/150
提交评论