初中数学中考模拟试卷及答案 (101)_第1页
初中数学中考模拟试卷及答案 (101)_第2页
初中数学中考模拟试卷及答案 (101)_第3页
初中数学中考模拟试卷及答案 (101)_第4页
初中数学中考模拟试卷及答案 (101)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)16的相反数是()A6BC6D6【分析】根据相反数的定义求解即可【解答】解:6的相反数是6,故选A【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数2下列运算正确的是()A5=x5Cx3x2=x6D3x2+2x3=5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答【解答】解:A、原式=x6,故本选项错误;B、原式=x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键3据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D39109【分析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【解答】解:39000000000=3.91010故选:A【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键4下列四个立体图形中,主视图、左视图、俯视图都相同的是()ABCD【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论【解答】解:球的主视图、左视图、俯视图都是圆,主视图、左视图、俯视图都相同的是B,故选B【点评】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键5从,0,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD【分析】根据有理数的定义可找出在,0,3.14,6这5个数中只有0、3.14和6为有理数,再根据概率公式即可求出抽到有理数的概率【解答】解:在,0,3.14,6这5个数中只有0、3.14和6为有理数,从,0,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是故选C【点评】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键6解分式方程=1,可知方程的解为()Ax=1Bx=3Cx=D无解【分析】直接利用分式方程的解法,首先去分母,进而解方程得出答案【解答】解:去分母得:22x=x1,解得:x=1,检验:当x=1时,x1=0,故此方程无解故选:D【点评】此题主要考查了解分式方程,正确掌握解题步骤是解题关键7观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,根据这个规律,则21+22+23+24+22017的末位数字是()A0B2C4D6【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21+22+23+24+22017的末位数字本题得以解决【解答】解:21=2,22=4,23=8,24=16,25=32,26=64,20174=5061,(2+4+8+6)506+2=10122,21+22+23+24+22017的末位数字是2,故选B【点评】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字8已知点A在函数y1=(x0)的图象上,点B在直线y2=kx+1+k(k为常数,且k0)上若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”请问这两个函数图象上的“友好点”对数的情况为()A有1对或2对B只有1对C只有2对D有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,)关于原点的对称点B(a,)一定位于直线y2上,即方程ka2(k+1)a+1=0 有解,整理方程得(a1)(ka1)=0,据此可得答案【解答】解:设A(a,),由题意知,点A关于原点的对称点B(a,),)在直线y2=kx+1+k上,则=ak+1+k,整理,得:ka2(k+1)a+1=0 ,即(a1)(ka1)=0,a1=0或ka1=0,则a=1或ka1=0,若k=0,则a=1,此时方程只有1个实数根,即两个函数图象上的“友好点”只有1对;若k0,则a=,此时方程有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键二、填空题(本大题共8小题,每小题4分,共32分)9函数y=中自变量x的取值范围是x7【分析】根据分母不为零,即可解决问题【解答】解:函数y=中自变量x的范围是x7故答案为x7【点评】本题考查函数自变量的取值范围,知道分母不能为零是解题的关键10因式分解:x26x+9=(x3)2【分析】直接运用完全平方公式进行因式分解即可【解答】解:x26x+9=(x3)2【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键11在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是92,众数是95【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数【解答】解:这组数据从小到大排列为:83,85,90,92,95,95,96则中位数是:92;众数是95故答案是:92,95【点评】本题考查了众数、中位数的定义,注意中位数是大小处于中间未知的数,首先把数从小到大排列X kB1.cOM12如图,点P是NOM的边OM上一点,PDON于点D,OPD=30,PQON,则MPQ的度数是60【分析】根据直角三角形的内角和,求得O,再根据平行线的性质,即可得到MPQ【解答】解:PDON于点D,OPD=30,RtOPD中,O=60,又PQON,MPQ=O=60,故答案为:60【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等13不等式组的解集是x3【分析】先求出每个不等式的解集,再求出不等式组的解集即可【解答】解:解不等式得:x3,解不等式得:x3,不等式组的解集为x3,故答案为:x3【点评】本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键14在ABC中BC=2,AB=2,AC=b,且关于x的方程x24x+b=0有两个相等的实数根,则AC边上的中线长为2【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论【解答】解:关于x的方程x24x+b=0有两个相等的实数根,=164b=0,AC=b=4,BC=2,AB=2,BC2+AB2=AC2,ABC是直角三角形,AC是斜边,AC边上的中线长=AC=2;故答案为:2【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明ABC是直角三角形是解决问题的关键15我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,=3,那么当n=12时,=3.10(结果精确到0.01,参考数据:sin15=cos750.259)【分析】圆的内接正十二边形被半径分成顶角为30的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=6.207r,d=2r,进而得到=3.10【解答】解:如图,圆的内接正十二边形被半径分成如图所示的十二个等腰三角形,其顶角为30,即O=30,ABO=A=75,作BCAO于点C,则ABC=15,AO=BO=r,BC=r,OC=r,AC=(1)r,RtABC中,cosA=,即0.259=,AB0.517r,L=120.517r=6.207r,又d=2r,=3.10,故答案为:3.10【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆16如图,O为等腰ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,O在点P处切线PD交BQ于点D,下列结论正确的是(写出所有正确结论的序号)若PAB=30,则弧的长为;若PDBC,则AP平分CAB;若PB=BD,则PD=6;无论点P在弧上的位置如何变化,CPCQ为定值【分析】根据POB=60,OB=6,即可求得弧的长;根据切线的性质以及垂径定理,即可得到=,据此可得AP平分CAB;根据BP=BO=PO=6,可得BOP是等边三角形,据此即可得出PD=6;判定ACPQCA,即可得到=,即CPCQ=CA2,据此可得CPCQ为定值【解答】解:如图,连接OP,AO=OP,PAB=30,POB=60,AB=12,OB=6,弧的长为=2,故错误;PD是O的切线,OPPD,PDBC,OPBC,=,PAC=PAB,AP平分CAB,故正确;若PB=BD,则BPD=BDP,OPPD,BPD+BPO=BDP+BOP,BOP=BPO,BP=BO=PO=6,即BOP是等边三角形,PD=OP=6,故正确;AC=BC,BAC=ABC,又ABC=APC,APC=BAC,又ACP=QCA,ACPQCA,=,即CPCQ=CA2(定值),故正确;故答案为:【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧三、解答题(本大题共8小题,共64分)17计算:2sin60+|3|+(2)0()1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可【解答】解:原式=2+3+12=2【点评】本题考查的是实数的混合运算,掌握特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质是解题的关键18求证:对角线互相垂直的平行四边形是菱形小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程已知:如图,在ABCD中,对角线AC,BD交于点O,ACBD求证:四边形ABCD是菱形【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形【解答】已知:如图,在ABCD中,对角线AC,BD交于点O,ACBD,求证:四边形ABCD是菱形证明:四边形ABCD为平行四边形,BO=DO,ACBD,AC垂直平分BD,AB=AD,四边形ABCD为菱形故答案为:ACBD;四边形ABCD是菱形【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键19(8分)如图,直线y=x+b与双曲线y=(k为常数,k0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点(1)求直线和双曲线的解析式;(2)点P在x轴上,且BCP的面积等于2,求P点的坐标【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据BCP的面积等于2,即可得到P的坐标【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=1;令x=0,则y=1,B(1,0),C(0,1),即BO=1=CO,BCP的面积等于2,BPCO=2,即|x(1)|1=2,解得x=3或5,P点的坐标为(3,0)或(5,0)【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式20(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【分析】设这批书共有3x本,根据每包书的数目相等即可得出关于x的一元一次方程,解之即可得出结论【解答】解:设这批书共有3x本,根据题意得: =,解得:x=500,3x=1500答:这批书共有500本【点评】本题考查了一元一次方程的应用,根据每包书的数目相等列出关于x的一元一次方程是解题的关键21(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0t220.042t430.064t6150.306t8a0.50t85b请根据图表信息回答下列问题:(1)频数分布表中的a=25,b=0.10;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【分析】(1)由阅读时间为0t2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果【解答】解:(1)根据题意得:20.04=50(人),则a=50(2+3+15+5)=25;b=550=0.10;故答案为:25;0.10;(2)阅读时间为6t8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:20000.10=200(人),则该校2000名学生中评为“阅读之星”的有200人【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键22(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,BAC=CDE=30,DE=80cm,AC=165cm(1)求支架CD的长;(2)求真空热水管AB的长(结果保留根号)【分析】(1)在RtCDE中,根据CDE=30,DE=80cm,求出支架CD的长是多少即可新 课 标 xk b1. c om(2)首先在RtOAC中,根据BAC=30,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少【解答】解:(1)在RtCDE中,CDE=30,DE=80cm,CD=80cos30=80=40(cm)(2)在RtOAC中,BAC=30,AC=165cm,OC=ACtan30=165=55(cm),OD=OCCD=5540=15(cm),AB=AOOB=AOOD=55215=95(cm)【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题)23问题背景:已知EDF的顶点D在ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记ADM的面积为S1,BND的面积为S2(1)初步尝试:如图,当ABC是等边三角形,AB=6,EDF=A,且DEBC,AD=2时,则S1S2=12;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将EDF绕点D旋转至如图所示位置,求S1S2的值;(3)延伸拓展:当ABC是等腰三角形时,设B=A=EDF=()如图,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和的三角函数表示)()如图,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程【分析】(1)首先证明ADM,BDN都是等边三角形,可得S1=22=,S2=(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y首先证明AMDBDN,可得=,推出=,推出xy=8,由S1=ADAMsin60=x,S2=DBsin60=y,可得S1S2=xy=xy=12;(3)如图3中,设AM=x,BN=y,同法可证AMDBDN,可得xy=ab,由S1=ADAMsin=axsin,S2=DBBNsin=bysin,可得S1S2=(ab)2sin2()结论不变,证明方法类似;【解答】解:(1)如图1中,ABC是等边三角形,AB=CB=AC=6,A=B=60,DEBC,EDF=60,BND=EDF=60,BDN=ADM=60,ADM,BDN都是等边三角形,S1=22=,S2=(4)2=4,S1S2=12,故答案为12(2)如图2中,设AM=x,BN=yMDB=MDN+NDB=A+AMD,MDN=A,AMD=NDB,A=B,AMDBDN,=,=,xy=8,S1=ADAMsin60=x,S2=DBsin60=y,S1S2=xy=xy=12(3)如图3中,设AM=x,BN=y,w w w .x k b 1.c o m同法可证AMDBDN,可得xy=ab,S1=ADAMsin=axsin,S2=DBBNsin=bysin,S1S2=(ab)2sin2如图4中,设AM=x,BN=y,同法可证AMDBDN,可得xy=ab,S1=ADAMsin=axsin,S2=DBBNsin=bysin,S1S2=(ab)2sin2【点评】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题24(10分)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,2),直线l:y=x交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合)(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PMx轴交l于点M,PNy轴交l于点N,求PM+PN的最大值(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由【分析】(1)把B(3,0),C(0,2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m, m2m2),得到N(m, m),M(m2+2m+2, m2m2),根据二次函数的性质即可得到结论;(3)求得E(0,),得到CE=,设P(m, m2m2),以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,得到G(0,),设P(m, m2m2),则F(m, m),列方程得到此方程无实数根,于是得到结论【解答】解:(1)把B(3,0),C(0,2)代入y=x2+bx+c得,抛物线的解析式为:y=x2x2;(2)设P(m, m2m2),PMx轴,PNy轴,M,N在直线AD上,N(m, m),M(m2+2m+2, m2m2),PM+PN=m2+2m+2mmm2+m+2=m2+m+=(m)2+,当m=时,PM+PN的最大值是;(3)能,理由:y=x交y轴于点E,E(0,),CE=,设P(m, m2m2),以E,C,P,F为顶点的四边形能否构成平行四边形,以CE为边,CEPF,CE=PF,F(m, m),mm2+m+2=,m=1,m=0(舍去),以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,G(0,),设P(m, m2m2),则F(m, m),(m2m2+m)=,0,此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形【点评】本题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确的理解题意是解题的关键新课标第一网系列资料 2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1下列实数中,为有理数的是( )A B C D12下列计算正确的是( )A B C D3据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A B C D4在下列图形中,既是轴对称图形,又是中心对称图形的是( )5一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A锐角三角形 B之直角三角形 C钝角三角形 D等腰直角三角形6下列说法正确的是( )A检测某批次灯泡的使用寿命,适宜用全面调查 B可能性是1%的事件在一次试验中一定不会发生 C数据3,5,4,1,的中位数是4 D“367人中有2人同月同日生”为必然事件7某几何体的三视图如图所示,因此几何体是( )A长方形 B圆柱 C球 D正三棱柱8抛物线的顶点坐标是( )A B C D9如图,已知直线,直线分别与相交,则的度数为( )A B C D10如图,菱形的对角线的长分别为,则这个菱形的周长为( )A B C D11中国古代数学著作算法统宗中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A24里 B12里 C6里 D3里12如图,将正方形折叠,使顶点与边上的一点重合(不与端点重合),折痕交于点,交于点,边折叠后与边交于点,设正方形的周长为,的周长为,则的值为( )A B C D随点位置的变化而变化二、填空题13分解因式: 14方程组的解是 15如图,为的直径,弦于点,已知,则的半径为 16如图,三个顶点的坐标分别为,以原点为位似中心,把这个三角形缩小为原来的,可以得到,已知点的坐标是,则点的坐标是 17甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是16米,方差分别是,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)18如图,点是函数与的图象在第一象限内的交点,则的值为 三、解答题 19计算:20解不等式组,并把它的解集在数轴上表示出来21为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中 ; ;(2)请计算扇形统计图中组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率22为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上(1)求的度数;(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23如图,与相切于,分别交于点,(1)求证:;(2)已知,求阴影部分的面积24自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购型商品的件数是用7500元采购型商品的件数的2倍,一件型商品的进价比一件型商品的进价多10元(1)求一件型商品的进价分别为多少元?(2)若该欧洲客商购进型商品共250件进行试销,其中型商品的件数不大于型的件数,且不小于80件,已知型商品的售价为240元/件,型商品的售价为220元/件,且全部售出,设购进型商品件,求该客商销售这批商品的利润与之间的函数关系式,并写出的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,求该客商售完所有商品并捐献资金后获得的最大收益25若三个非零实数满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数构成“和谐三数组”(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由(2)若三点均在函数(为常数,)的图象上,且这三点的纵坐标构成“和谐三数组”,求实数的值;(3)若直线与轴交于点,与抛物线交于两点若为等腰直角三角形,求的值;若对任意,两点总关于原点对称,求点的坐标(用含的式子表示);(3)当点运动到某一位置时,恰好使得,且点为线段的中点,此时对于该抛物线上任意一点总有成立,求实数的最小值新课标第一网系列资料 新课标第一网不用注册,免费下载! 遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A-3 B3 C D2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( )A B C D3.把一张长方形纸片按如图、图的方式从右向左连续对折两次后得到图,再在图中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( ) A B C D 4.下列运算正确的是( )A B C. D5.我市某连续7天的最高气温为:,.这组数据的平均数和众数分别是( )A, B, C., D,6.把一块等腰直角三角尺和直角如图放置.如果,则的度数为( )A B C. D7.不等式的非负整数解为( )A2个 B3个 C.4个 D5个8.已知圆锥的底面面积为 ,母线长为6,则圆锥的侧面积是( )A B C.18 D27 9.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A B C. D10.如图,的面积是12,点、分别是、的中点,则的面积是( )A4.5 B5 C.5.5 D611.如图,抛物线经过点,对称轴如图所示.则下列结论:;,其中所有正确的结论是( )A B C. D12.如图,中,是中点,是的平分线,交于.若,则的长为( )A11 B12 C.13 D14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)13. 14.一个正多边形的一个外角为,则它的内角和为 15.按一定规律排列的一列数依次为:,按此规律,这列数中的第100个数是 16.明代数学家程大位的算法统宗中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,是的直径,点是的中点,过点的直线与交于、两点.若,则弦的长为 18.如图,点、在函数的图象上,直线分别与轴、轴交于点、,且,则的面积是 三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.) 19. 计算:.20. 化简分式:,并从1,2,3,4这四个数中取一个合适的数作为的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥和引桥两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在处正上方97 m处的点,测得处的俯角为(超出处被小山体阻挡无法观测).无人机飞行到处正上方的处时能看到处俯角为.(1)求主桥的长度.(2)若两观察点、的连线与水平方向的夹角为,求引桥的长.(长度均精确到1 m,参考数据:,.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,、是的切线,为切点,.连接并延长与交于点,连接、.(1)求证:四边形是菱形.(2)若半径为1,求菱形的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括、两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放、两型自行车各50辆.投放成本共计7500元,其中型车的成本单价比型车高10元.、两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放辆“小黄车”;乙街区每1000人投放辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求的值.26.边长为的正方形中,是对角线上的一个动点(点与、不重合),连接,将绕点顺时针旋转到.连接,与交于点.延长线与(或延长线)交于点.(1)连接,证明:.(2)设,试写出关于的函数关系式,并求出当为何值时,.(3)猜想与的数量关系,并证明你的结论.27.如图,抛物线(,、为常数)与轴交于、两点,与轴交于点.直线的函数关系式为.(1)求该抛物线的函数关系式与点坐标;(2)已知点是线段上的一个动点,过点作轴的垂线分别与直线和抛物线交于、两点.当为何值时,恰好是以为底边的等腰三角形?(3)在(2)问条件下,当恰好是以为底边等腰三角形时,动点相应位置记为点,将绕原点顺时针旋转得到(旋转角在到之间).i.探究:线段上是否存在定点(不与、重合),无论如何旋转,始终保持不变.若存在,试求出点坐标;若不存在,请说明理由.ii:试求出此旋转过程中,的最小值.新课标第一网系列资料 2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1下列实数中,为有理数的是( )A B C D12下列计算正确的是( )A B C D3据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A B C D4在下列图形中,既是轴对称图形,又是中心对称图形的是( )5一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A锐角三角形 B之直角三角形 C钝角三角形 D等腰直角三角形6下列说法正确的是( )A检测某批次灯泡的使用寿命,适宜用全面调查 B可能性是1%的事件在一次试验中一定不会发生 C数据3,5,4,1,的中位数是4 D“367人中有2人同月同日生”为必然事件7某几何体的三视图如图所示,因此几何体是( )A长方形 B圆柱 C球 D正三棱柱8抛物线的顶点坐标是( )A B C D9如图,已知直线,直线分别与相交,则的度数为( )A B C D10如图,菱形的对角线的长分别为,则这个菱形的周长为( )A B C D11中国古代数学著作算法统宗中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论