2013二次函数.doc_第1页
2013二次函数.doc_第2页
2013二次函数.doc_第3页
2013二次函数.doc_第4页
2013二次函数.doc_第5页
已阅读5页,还剩479页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年中考数学分类汇编之二次函数一选择题8(2013舟山)若一次函数y=ax+b(a0)的图象与x轴的交点坐标为(2,0),则抛物线y=ax2+bx的对称轴为()A直线x=1B直线x=2C直线x=1D直线x=4考点:二次函数的性质;一次函数图象上点的坐标特征分析:先将(2,0)代入一次函数解析式y=ax+b,得到2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=即可求解解答:解:一次函数y=ax+b(a0)的图象与x轴的交点坐标为(2,0),2a+b=0,即b=2a,抛物线y=ax2+bx的对称轴为直线x=1故选C点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=10(2013义乌)如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:当x3时,y0;3a+b0;1a;3n4中,正确的是()ABCD考点:二次函数图象与系数的关系 分析:由抛物线的对称轴为直线x=1,一个交点A(1,0),得到另一个交点坐标,利用图象即可对于选项作出判断;根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=2a,将其代入(3a+b),并判定其符号;根据两根之积=3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围解答:解:抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴直线是x=1,该抛物线与x轴的另一个交点的坐标是(3,0),根据图示知,当x3时,y0故正确;根据图示知,抛物线开口方向向下,则a0对称轴x=1,b=2a,3a+b=3a2a=a0,即3a+b0故错误;抛物线与x轴的两个交点坐标分别是(1,0),(3,0),13=3,=3,则a=抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),2c3,1,即1a故正确;根据题意知,n=a+b+c=c2c3,c2,即n2故错误综上所述,正确的说法有故选D点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定9(2013衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x1)24,则b、c的值为()Ab=2,c=6Bb=2,c=0Cb=6,c=8Db=6,c=2考点:二次函数图象与几何变换;函数的平移 分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值解答:解:函数y=(x1)24的顶点坐标为(1,4),是向右平移2个单位,再向下平移3个单位得到,12=1,4+3=1,平移前的抛物线的顶点坐标为(1,1),平移前的抛物线为y=(x+1)21,即y=x2+2x,b=2,c=0故选B点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便10(2013宁波)如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()Aabc0B2a+b0Cab+c0D4acb20考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:A根据图示知,抛物线开口方向向上,则a0抛物线的对称轴x=10,则b0抛物线与y轴交与负半轴,则c0,所以abc0故本选项错误;Bx=1,b=2a,2a+b=0故本选项错误;C对称轴为直线x=1,图象经过(3,0),该抛物线与x轴的另一交点的坐标是(1,0),当x=1时,y=0,即ab+c=0故本选项错误;D根据图示知,该抛物线与x轴有两个不同的交点,则=b24ac0,则4acb20故本选项正确;故选D点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定9(2013丽水)若二次函数y=ax2的图象经过点P(2,4),则该图象必经过点()A(2,4)B(2,4)C(4,2)D(4,2)考点:二次函数图象上点的坐标特征分析:先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答解答:解:二次函数y=ax2的对称轴为y轴,若图象经过点P(2,4),则该图象必经过点(2,4)故选A点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键10(2013湖州)如图,在1010的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是()A16B15C14D13考点:二次函数综合题;新定义;网格型分析:根据在OB上的两个交点之间的距离为3可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解解答:解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14故选C点评:本题是二次函数综合题型,主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观10(2013杭州)给出下列命题及函数y=x,y=x2和y=如果,那么0a1;如果,那么a1;如果,那么1a0;如果时,那么a1则()A正确的命题是B错误的命题是C正确的命题是D错误的命题只有考点:二次函数与不等式(组);命题与定理分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(1,1),如果,那么0a1正确;如果,那么a1或1a0,故本小题错误;如果,那么a值不存在,故本小题错误;如果时,那么a1正确综上所述,正确的命题是故选A点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键8(2013龙岩)若二次函数y=ax2+bx+c(a0)的图象如图所示,则下列选项正确的是()Aa0Bc0Cac0Dbc0考点:二次函数图象与系数的关系分析:由抛物线开口向下得到a小于0,再根据对称轴在y轴左侧得到a与b同号得到b大于0,由抛物线与y轴交点在负半轴得到c小于0,即可作出判断解答:解:根据图象得:a0,c0,b0,则ac0,bc0,故选C点评:此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9(2013昭通)已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Aa0B3是方程ax2+bx+c=0的一个根Ca+b+c=0D当x1时,y随x的增大而减小考点:二次函数图象与系数的关系;二次函数的性质分析:根据抛物线的开口方向可得a0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=1,x=3;根据图象可得x=1时,y0;根据抛物线可直接得到x1时,y随x的增大而增大解答:解:A因为抛物线开口向下,因此a0,故此选项错误;B根据对称轴为x=1,一个交点坐标为(1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C把x=1代入二次函数y=ax2+bx+c(a0)中得:y=a+b+c,由图象可得,y0,故此选项错误;D当x1时,y随x的增大而增大,故此选项错误;故选:B点评:此题主要考查了二次函数图象与系数的关系,关键是从抛物线中的得到正确信息二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小一次项系数b和二次项系数a共同决定对称轴的位置 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)抛物线与x轴交点个数=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点9(2013白银)已知二次函数y=ax2+bx+c(a0)的图象如图所示,在下列五个结论中:2ab0;abc0;a+b+c0;ab+c0;4a+2b+c0,错误的个数有()A1个B2个C3个D4个考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,1,2代入函数解析式判断y的值,进而对所得结论进行判断解答:解:由函数图象开口向下可知,a0,由函数的对称轴x=0,故b0,所以2ab0,正确; a0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c0,故abc0;正确;当x=1时,y=a+b+c0,正确;当x=1时,y=ab+c0,错误;当x=2时,y=4a+2b+c0,错误;故错误的有2个故选:B点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,1,2代入函数解析式判断y的值是解题关键12(2013重庆市)一次函数y=ax+b(a0)、二次函数y=ax2+bx和反比例函数y=(k0)在同一直角坐标系中的图象如图所示,A点的坐标为(2,0),则下列结论中,正确的是()Ab=2a+kBa=b+kCab0Dak0考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:根据函数图象知,由一次函数图象所在的象限可以确定a、b的符号,且直线与抛物线均经过点A,所以把点A的坐标代入一次函数或二次函数可以求得a=2b,k的符号可以根据双曲线所在的象限进行判定解答:解:根据图示知,一次函数与二次函数的交点A的坐标为(2,0),2a+b=0,b=2a由图示知,抛物线开口向上,则a0,b0反比例函数图象经过第一、三象限,k0A由图示知,双曲线位于第一、三象限,则k02a+k2a,即b2a+k故本选项错误;Bb=2a,a=k,则kkk0这与k0相矛盾,a=b+k不成立故本选项错误;Ca0,b=2a,ba0故本选项错误;D观察二次函数y=ax2+bx和反比例函数y=(k0)图象知,当x=1时,y=k=a,即ka,a0,k0,ak0故本选项正确;故选D点评:本题综合考查了一次函数、二次函数以及反比例函数的图象解题的关键是会读图,从图中提取有用的信息10(2013乌鲁木齐)已知m,n,k为非负实数,且mk+1=2k+n=1,则代数式2k28k+6的最小值为()A2B0C2D2.5考点:二次函数的最值;最值问题分析:首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k28k+6的最小值求出即可解答:解:m,n,k为非负实数,且mk+1=2k+n=1,m,n,k最小为0,当n=0时,k最大为:,0k,2k28k+6=2(k2)22,a=20,k2时,代数式2k28k+6的值随x的增大而减小,k=时,代数式2k28k+6的最小值为:2()28+6=2.5故选:D点评:此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k28k+6的最小值是解题关键6(2013百色)在反比例函数y=中,当x0时,y随x的增大而增大,则二次函数y=mx2+mx的图象大致是图中的()ABCD考点:二次函数图象与系数的关系;反比例函数的性质分析:根据反比例函数图象的性质确定出m0,则二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴,即可得出答案解答:解:反比例函数y=,中,当x0时,y随x的增大而增大,根据反比例函数的性质可得m0;该反比例函数图象经过第二、四象限,二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴只有A选项符合故选A点评:本题考查了二次函数图象、反比例函数图象利用反比例函数的性质,推知m0是解题的关键,体现了数形结合的思想8(2013台湾)坐标平面上有一函数y=3x2+12x7的图形,其顶点坐标为何?()A(2,5)B(2,19)C(2,5)D(2,43)考点:二次函数的性质分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可得解解答:解:y=3x2+12x7=3(x24x+4)+127,=3(x2)2+5,函数的顶点坐标为(2,5)故选A点评:本题考查了二次函数的性质,把函数解析式转化为顶点式形式再确定顶点坐标更加简便6(2013江西省)若二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()Aa0Bb24ac0Cx1x0x2Da(x0x1)(x0x2)0考点:抛物线与x轴的交点分析:根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解解答:解:A二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;Bx1x2,=b24ac0,故本选项错误;C若a0,则x1x0x2,若a0,则x0x1x2或x1x2x0,故本选项错误;D若a0,则x0x10,x0x20,所以,(x0x1)(x0x2)0,a(x0x1)(x0x2)0,若a0,则(x0x1)与(x0x2)同号,a(x0x1)(x0x2)0,综上所述,a(x0x1)(x0x2)0正确,故本选项正确故选D点评:本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,C、D选项要注意分情况讨论10(2013资阳)如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,2),且顶点在第三象限,设P=ab+c,则P的取值范围是()A4P0B4P2C2P0D1P0考点:二次函数图象与系数的关系分析:求出a0,b0,把x=1代入求出a=2b,b=2a,把x=1代入得出y=ab+c=2a4,求出2a4的范围即可解答:解:二次函数的图象开口向上,a0,对称轴在y轴的左边,0,b0,图象与y轴的交点坐标是(0,2),过(1,0)点,代入得:a+b2=0,a=2b,b=2a,y=ax2+(2a)x2,把x=1代入得:y=a(2a)2=2a4,b0,b=2a0,a2,a0,0a2,02a4,42a40,即4P0,故选A点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c)8(2013宜宾)对于实数a、b,定义一种运算“”为:ab=a2+ab2,有下列命题:13=2;方程x1=0的根为:x1=2,x2=1;不等式组的解集为:1x4;点(,)在函数y=x(1)的图象上其中正确的是()ABCD考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理专题:新定义分析:根据新定义得到13=12+132=2,则可对进行判断;根据新定义由x1=0得到x2+x2=0,然后解方程可对进行判断;根据新定义得,解得1x4,可对进行判断;根据新定义得y=x(1)=x2x2,然后把x=代入计算得到对应的函数值,则可对进行判断解答:解:13=12+132=2,所以正确;x1=0,x2+x2=0,x1=2,x2=1,所以正确;(2)x4=42x24=2x2,1x3=1+x23=x4,解得1x4,所以正确;y=x(1)=x2x2,当x=时,y=2=,所以错误故选C点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组11(2013雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据与y轴的交点确定出c0,然后确定出一次函数图象与反比例函数图象的情况,即可得解解答:解:二次函数图象开口方向向上,a0,对称轴为直线x=0,b0,与y轴的正半轴相交,c0,y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合故选B点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键9(2013雅安)将抛物线y=(x1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()Ay=(x2)2By=(x2)2+6Cy=x2+6Dy=x2考点:二次函数图象与几何变换;函数的平移分析:根据“左加右减、上加下减”的原则进行解答即可解答:解:将抛物线y=(x1)2+3向左平移1个单位所得直线解析式为:y=(x1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+33,即y=x2故选D点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键10(2013攀枝花)二次函数y=ax2+bx+c(a0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:根据二次函数的图象得出a,b,c的符号,进而利用一次函数与反比例函数得出图象经过的象限解答:解:二次函数y=ax2+bx+c(a0)的图象开口向下,a0,对称轴经过x的负半轴,a,b同号,图象经过y轴的正半轴,则c0,函数y=,a0,图象经过二、四象限,y=bx+c,b0,c0,图象经过一、二、四象限,故选;B点评:此题主要考查了二次函数的图象以及一次函数和反比例函数的性质,根据已知得出a,b,c的值是解题关键10(2013内江)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=x2+3x上的概率为()ABCD考点:列表法与树状图法;二次函数图象上点的坐标特征专题:阅读型分析:画出树状图,再求出在抛物线上的点的坐标的个数,然后根据概率公式列式计算即可得解解答:解:根据题意,画出树状图如下:一共有36种情况,当x=1时,y=x2+3x=12+31=2,当x=2时,y=x2+3x=22+32=2,当x=3时,y=x2+3x=32+33=0,当x=4时,y=x2+3x=42+34=4,当x=5时,y=x2+3x=52+35=10,当x=6时,y=x2+3x=62+36=18,所以,点在抛物线上的情况有2种,P(点在抛物线上)=故选A点评:本题考查了列表法与树状图法,二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比9(2013内江)若抛物线y=x22x+c与y轴的交点为(0,3),则下列说法不正确的是()A抛物线开口向上B抛物线的对称轴是x=1C当x=1时,y的最大值为4D抛物线与x轴的交点为(1,0),(3,0)考点:二次函数的性质分析:A根据二次函数二次项的系数的正负确定抛物线的开口方向B利用x=可以求出抛物线的对称轴C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值D当y=0时求出抛物线与x轴的交点坐标解答:解:抛物线过点(0,3),抛物线的解析式为:y=x22x3A抛物线的二次项系数为10,抛物线的开口向上,正确B根据抛物线的对称轴x=1,正确C由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为4,而不是最大值故本选项错误D当y=0时,有x22x3=0,解得:x1=1,x2=3,抛物线与x轴的交点坐标为(1,0),(3,0)正确故选C点评:本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物线与x轴的交点坐标10(2013广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1下列结论:abcO,2a+b=O,b24acO,4a+2b+cO其中正确的是()AB只有CD考点:二次函数图象与系数的关系分析:由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项错误;由抛物线与x轴有2个交点,得到根的判别式b24ac大于0,选项错误;由x=2时对应的函数值小于0,将x=2代入抛物线解析式可得出4a2b+c小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=2a,得到选项正确,即可得到正确结论的序号解答:解:抛物线的开口向上,a0,0,b0,抛物线与y轴交于正半轴,c0,abc0,错误;对称轴为直线x=1,=1,即2a+b=0,正确,抛物线与x轴有2个交点,b24ac0,错误;对称轴为直线x=1,x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,4a+2b+c0,正确;则其中正确的有故选C点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b24ac的符号,此外还要注意x=1,1,2及2对应函数值的正负来判断其式子的正确与否8(2013嘉兴)若一次函数y=ax+b(a0)的图象与x轴的交点坐标为(2,0),则抛物线y=ax2+bx的对称轴为()A直线x=1B直线x=2C直线x=1D直线x=4考点:二次函数的性质;一次函数图象上点的坐标特征 分析:先将(2,0)代入一次函数解析式y=ax+b,得到2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=即可求解解答:解:一次函数y=ax+b(a0)的图象与x轴的交点坐标为(2,0),2a+b=0,即b=2a,抛物线y=ax2+bx的对称轴为直线x=1故选C点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=10(2013达州)二次函数y=ax2+bx+c的图象如图所示,反比例函数与一次函数y=cx+a在同一平面直角坐标系中的大致图象是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象 分析:首先根据二次函数图象与y轴的交点可得c0,根据抛物线开口向下可得a0,由对称轴在y轴右边可得a、b异号,故b0,再根据反比例函数的性质与一次函数图象与系数的关系画出图象可得答案解答:解:根据二次函数图象与y轴的交点可得c0,根据抛物线开口向下可得a0,由对称轴在y轴右边可得a、b异号,故b0,则反比例函数的图象在第一、三象限,一次函数y=cx+a在第一、三、四象限,故选:B点评:此题主要考查了二次函数图象,一次函数图象,反比例函数图象,关键是根据二次函数图象确定出a、b、c的正负8(2013成都)在平面直角坐标系中,下列函数的图象经过原点的是()Ay=x+3By=Cy=2xDy=2x2+x7考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征分析:将(0,0)代入各选项进行判断即可解答:解:A当x=0时,y=3,不经过原点,故本选项错误;B反比例函数,不经过原点,故本选项错误;C当x=0时,y=0,经过原点,故本选项正确;D当x=0时,y=7,不经过原点,故本选项错误;故选C点评:本题考查了一次函数图象、反比例函数图象及二次函数图象上点的坐标特征,注意代入判断,难度一般10(2013巴中)已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Aac0B当x1时,y随x的增大而减小Cb2a=0Dx=3是关于x的方程ax2+bx+c=0(a0)的一个根考点:二次函数图象与系数的关系;二次函数的性质 分析:由函数图象可得抛物线开口向上,得到a大于0,又抛物线与y轴的交点在y轴负半轴,得到c小于0,进而得到a与c异号,根据两数相乘积为负得到ac小于0,选项A错误;由抛物线开口向上,对称轴为直线x=1,得到对称轴右边y随x的增大而增大,选项B错误;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,选项C错误;由抛物线与x轴的交点为(1,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(3,0),进而得到方程ax2+bx+c=0的有一个根为3,选项D正确解答:解:由二次函数y=ax2+bx+c的图象可得:抛物线开口向上,即a0,抛物线与y轴的交点在y轴负半轴,即c0,ac0,选项A错误;由函数图象可得:当x1时,y随x的增大而减小;当x1时,y随x的增大而增大,选项B错误;对称轴为直线x=1,=1,即2a+b=0,选项C错误;由图象可得抛物线与x轴的一个交点为(1,0),又对称轴为直线x=1,抛物线与x轴的另一个交点为(3,0),则x=3是方程ax2+bx+c=0的一个根,选项D正确故选D点评:此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,难度适中二次函数y=ax2+bx+c=0(a0),a的符合由抛物线的开口方向决定,c的符合由抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置决定,抛物线的增减性由对称轴决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标3(2013上海市)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()Ay=(x1)2+2By=(x+1)2+2Cy=x2+1Dy=x2+3考点:二次函数图象与几何变换;函数的平移分析:根据向下平移,纵坐标相减,即可得到答案解答:解:抛物线y=x2+2向下平移1个单位,抛物线的解析式为y=x2+21,即y=x2+1故选C点评:本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|10(2013陕西省)已知两点A(5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a0)上,点C(x0,y0)是该抛物线的顶点若y1y2y0,则x0的取值范围是()Ax05Bx01C5x01D2x03考点:二次函数图象上点的坐标特征分析:先判断出抛物线开口方向上,然后分点A、B在对称轴的同一侧与异侧两种情况讨论求解解答:解:点C(x0,y0)是抛物线的顶点,y1y2y0,抛物线有最小值,函数图象开口向上,点A、B在对称轴的同一侧,y1y2y0,x03,点A、B在对称轴异侧,y1y2y0,x0=1;综上所述,x0的取值范围是x01故选B点评:本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键7(2013淄博)如图,RtOAB的顶点A(2,4)在抛物线y=ax2上,将RtOAB绕点O顺时针旋转90,得到OCD,边CD与该抛物线交于点P,则点P的坐标为()A(,)B(2,2)C(,2)D(2,)考点:二次函数综合题;综合题分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:RtOAB的顶点A(2,4)在抛物线y=ax2上,4=a(2)2,解得:a=1解析式为y=x2,RtOAB的顶点A(2,4),OB=OD=2,RtOAB绕点O顺时针旋转90,得到OCD,CDx轴,点D和点P的纵坐标均为2,令y=2,得2=x2,解得:x=,点P在第一象限,点P的坐标为:(,2)故选:C点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可11(2013枣庄)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()Ay=3(x2)21By=3(x2)2+1Cy=3(x+2)21Dy=3(x+2)2+1考点:二次函数图象与几何变换分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(2,1),所得抛物线为=3(x+2)21故选B点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键11(2013烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;2ab=0;4a+2b+c0;若(5,y1),(,y2)是抛物线上两点,则y1y2其中说法正确的是()ABCD考点:二次函数图象与系数的关系 分析:根据图象得出a0,b=2a0,c0,即可判断;把x=2代入抛物线的解析式即可判断,求出点(5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x1时,y随x的增大而增大即可判断解答:解:二次函数的图象的开口向上,a0,二次函数的图象y轴的交点在y轴的负半轴上,c0,二次函数图象的对称轴是直线x=1,=1,b=2a0,abc0,正确;2ab=2a2a=0,正确;二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(3,0)与x轴的另一个交点的坐标是(1,0),把x=2代入y=ax2+bx+c得:y=4a+2b+c0,错误;二次函数y=ax2+bx+c图象的对称轴为x=1,点(5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x1时,y随x的增大而增大,3,y2y1,正确;故选C点评:本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力16(2013泰安)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()ABCD考点:二次函数的图象;一次函数的图象分析:令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a0,然后确定出一次函数图象经过第一三象限,从而得解解答:解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确故选C点评:本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等10(2013泰安)对于抛物线y=(x+1)2+3,下列结论:抛物线的开口向下;对称轴为直线x=1;顶点坐标为(1,3);x1时,y随x的增大而减小,其中正确结论的个数为()A1B2C3D4考点:二次函数的性质分析:根据二次函数的性质对各小题分析判断即可得解解答:解:a=0,抛物线的开口向下,正确;对称轴为直线x=1,故本小题错误;顶点坐标为(1,3),正确;x1时,y随x的增大而减小,x1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是共3个故选C点评:本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性12(2013日照)如图,已知抛物线y1=x2+4x和直线y2=2x我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2下列判断:当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x=1其中正确的有()A1个B2个C3个D4个考点:二次函数的性质分析:若y1=y2,记M=y1=y2首先求得抛物线与直线的交点坐标,利用图象可得当x2时,利用函数图象可以得出y2y1;当0x2时,y1y2;当x0时,利用函数图象可以得出y2y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;即可求得答案解答:解:当y1=y2时,即x2+4x=2x时,解得:x=0或x=2,当x2时,利用函数图象可以得出y2y1;当0x2时,y1y2;当x0时,利用函数图象可以得出y2y1;错误;抛物线y1=x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;当x0时,根据函数图象可以得出x值越大,M值越大;正确;抛物线y1=x2+4x的最大值为4,故M大于4的x值不存在,正确;如图:当0x2时,y1y2;当M=2,2x=2,x=1;x2时,y2y1;当M=2,x2+4x=2,x1=2+,x2=2+(舍去),使得M=2的x值是1或2+,错误;故选B点评:此题主要考查了二次函数与一次函数综合应用注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用12(2013聊城)如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为()A2B4C8D16考点:二次函数图象与几何变换分析:根据抛物线解析式计算出y=的顶点坐标,过点C作CAy轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可解答:解:过点C作CAy,抛物线y=(x24x)=(x24x+4)2=(x2)22,顶点坐标为C(2,2),对称轴与两段抛物线所围成的阴影部分的面积为:22=4,故选:B点评:本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键8(2013聊城)二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()ABCD考点:二次函数的图象;一次函数的图象专题:数形结合分析:根据二次函数图象的开口方向向下确定出a0,再根据对称轴确定出b0,然后根据一次函数图象解答即可解答:解:二次函数图象开口方向向下,a0,对称轴为直线x=0,b0,一次函数y=ax+b的图象经过第二四象限,且与y轴的正半轴相交,C选项图象符合故选C点评:本题考查了二次函数的图象,一次函数的图象,根据图形确定出a、b的正负情况是解题的关键5(2013济宁)二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Aa0B当1x3时,y0Cc0D当x1时,y随x的增大而增大考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论