



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15.4.1因式分解提公因式法北关中学 左小锋学习目标 1、经历从分解因数到分解因式的类比过程. 2、了解分解因式的意义,以及它与整式乘法的相互关系 3、会用提公因式法分解因式。学法指津1 还记得我们刚开始学习的乘法公式吗?认真回忆乘法公式,结合课本165页,你能发现乘法公式与我们将要学习的因式分解有什么区别和联系吗?2 如果你已经发现了乘法公式与因式分解的关系,那你能不能用乘法公式的规律来寻找一下因式分解的方法呢?3 这节课你可以尝试利用乘法公式中最简单的分配率反向得到一种因式分解的的方法,并巩固你的发现。学习过程一、温故知新:1、单项式与多项式相乘,就是用 去乘 的 ,再把所得的积相加。如:= 2、多项式与多项式相乘,先用一个多项式的 去乘另一个多项式的 ,再把所得的积相加。如:= 3、整式乘法的平方差公式:= 4、整式乘法的完全平方公式:= ,= 二、自主学习 合作探究探究一:因式分解的定义(1)计算下列各式:(x+1)(x1)=_ _;(y3)2_ _;x(x+1)_ _; m(abc)_ _(2)根据上面的算式填空:( )( );y26y9( )2;x2+x( )( );mambmc( )( );思考:1、上面(1)与(2)中各式有什么区别与联系?2、(1)中由整式乘积的形式得到多项式的运算是_.(2)中由多项式得到整式乘积形式。把一个 化成几个 的 的形式,这种变形叫做把这个多项式_,也叫做把这个多项式_。3、因式分解与整式的乘法有什么关系?三、新知运用:例1下列各式从左到右的变形,哪是因式分解(1)4a(a2b)4a28ab;(2)6ax3ax23ax(2x);(3)a24(a2)(a2);(4)x23x2x(x3)236 反思:1、分解因式的对象是_,结果是_的形式。2、分解后每个因式的次数要 (填“高”或“低”)于原来多项式的次数。探究二:因式分解的方法:1、公因式的概念一块场地由三个矩形组成,这些矩形的长分别为a,b,c,宽都是m,用两个不同的代数式表示这块场地的面积. _, _填空:多项式有 项,每项都含有 , 是这个多项式的公因式。 有 项,每项都含有 , 是这个多项式的公因式。 有 项,每项都含有 , 是这个多项式的公因式。 多项式各项都含有的 ,叫做这个多项式各项的公因式。2提公因式法分解因式如果一个多项式的各项含有公因式,那么就可以 ,从而将多项式化成两个 的乘积的形式,这种分解因式的方法叫做提公因式法。新知运用:例2把分解因式。分析:如何确定公因式(1)系数:若各项系数是整系数,取系数的 ;(2)字母因数:一是取 的字母因式(也可是多项式因式);二是取各相同字母因式的指数取次数 的例3把2a(b+c)3(b+c)分解因式。反思:如何检查因式分解是否正确?自学检测1、下列各式中,从等式左边到右边的变形,属因式分解的是 (填序号) 2、若分解因式,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第9课 依法行使民主权利教学设计-2023-2024学年中职思想政治经济政治与社会人教版
- 第28课 改革开放和社会主义现代化建设的巨大成就 教学设计 -2024-2025学年高一统编版2019必修中外历史纲要上册
- 第10课《凡尔赛条约》和《九国公约》说课稿
- 九年级化学上册 第2单元 实验活动1 氧气的实验室制取与性质说课稿 (新版)新人教版
- 五年级体育下册 第十九课 对墙投掷小沙包、立定跳远 游戏:迎面接力说课稿
- 关于公司职工工作总结5篇
- 辅警招聘考试行政职业能力测验(数量关系)模拟试卷附完整答案
- 商业地产店面转让与运营管理合同
- 条码打印机专业维修与定期保养服务合同-@-1
- 创始股东投资与知识产权归属协议书
- 医院手术室质控体系构建与管理
- 喷涂基础知识培训课件
- 2025年驻外内聘考试题库
- 中铁四局工作汇报与战略规划
- 幼儿园教师防恐防暴安全知识培训
- 中国禁毒法课件
- 浅谈机关干部身心健康
- 湖南省多测合一收费指导标准(试行)2024年版
- 企业融资培训课件
- 2025年抗菌药物合理使用培训
- 期货技术指标培训课件
评论
0/150
提交评论