




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题能力训练14直线与圆(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.若直线l通过两直线7x+5y-24=0和x-y=0的交点,且点(5,1)到l的距离为,则l的方程是() A.3x+y+4=0B.3x-y+4=0C.3x-y-4=0D.x-3y-4=02.若直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或123.(2017浙江宁波中学模拟)若过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=04.已知直线l:kx+y+4=0(kZ)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()ABCD.25.已知直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|2,则k的取值范围是()ABC.-D6.若圆C1:x2+y2-2ax+a2-9=0(aR)与圆C2:x2+y2+2by+b2-1=0(bR)内切,则ab的最大值为()AB.2C.4D.27.已知圆C:(x+2)2+y2=4,直线l:kx-y-2k=0(kR),若直线l与圆C恒有公共点,则实数k的最小值是()A.-B.-1C.1D8.已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a0)将ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)BCD二、填空题(本大题共6小题,每小题5分,共30分)9.(2017浙江金丽衢十二校二模)直线l:x+y+2-3=0(R)恒过定点,P(1,1)到该直线的距离最大值为.10.经过点A(5,2),B(3,-2),且圆心在直线2x-y-3=0上的圆的方程为.11.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r0)在第一象限的一个公共点为P,过P作与x轴平行的直线分别交两圆于不同的两点A,B(异于点P),且OAOB,则直线OP的斜率为,r=.12.已知从圆C:(x+1)2+(y-2)2=2外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取得最小值时点P的坐标为.13.直线l过点(-2,2)且与x轴、y轴分别交于点(a,0),(0,b),若|a|=|b|,则l的方程为.14.已知A是射线x+y=0(x0)上的动点,B是x轴正半轴上的动点,若直线AB与圆x2+y2=1相切,则|AB|的最小值是.三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).(1)若点M,N到直线l的距离相等,求实数k的值;(2)对于l上任意一点P,MPN恒为锐角,求实数k的取值范围.16.(本小题满分15分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.参考答案专题能力训练14直线与圆1.C2.D解析 由圆x2+y2-2x-2y+1=0,知圆心(1,1),半径为1,所以=1,解得b=2或b=12.3.B解析 依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.因此圆心(1,0)与切点(3,1)连线的斜率为,切线的斜率k=-2.故圆的切线方程为y-1=-2(x-3),即2x+y-7=0.4.C解析 由l:kx+y+4=0(kR)是圆C:x2+y2+4x-4y+6=0的一条对称轴知,其必过圆心(-2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d=,所以弦长等于2=2.故选C.5.D解析 由题意知圆心(2,3)到直线y=kx+3的距离为d=1,故当|MN|2时,d=1,解得k.故选D.6.B解析 圆C1的方程x2+y2-2ax+a2-9=0(aR)可化为(x-a)2+y2=9,圆心坐标为(a,0),半径为3.圆C2的方程x2+y2+2by+b2-1=0(bR)可化为x2+(y+b)2=1,圆心坐标为(0,-b),半径为1.圆C1:x2+y2-2ax+a2-9=0(aR)与圆C2:x2+y2+2by+b2-1=0(bR)内切,=3-1,即a2+b2=4,ab(a2+b2)=2.ab的最大值为2.7.A解析 由题意知圆心C(-2,0),半径r=2.又圆C与直线l恒有公共点,所以圆心C(-2,0)到直线l的距离dr.因此2,解得-k.所以实数k的最小值为-.8.B图1解析 (1)当直线y=ax+b与AB,BC相交时(如图1),由得yE=,又易知xD=-,|BD|=1+.由SDBE=,得b=.图2(2)当直线y=ax+b与AC,BC相交时(如图2),由SFCG=(xG-xF)|CM|=,得b=1-(0a0恒成立,b,即b.故选B.9.(-2,3)解析 直线l:x+y+2-3=0(R),即(y-3)+x+2=0,令解得x=-2,y=3.故直线l恒过定点(-2,3),P(1,1)到该直线的距离最大值=.10.(x-2)2+(y-1)2=10解析 圆过A(5,2),B(3,-2)两点,圆心一定在线段AB的垂直平分线上.易知线段AB的垂直平分线方程为y=-(x-4).设所求圆的圆心为C(a,b),则有解得a=2,且b=1.因此圆心坐标为(2,1),半径r=|AC|=.故所求圆的方程为(x-2)2+(y-1)2=10.11.2解析 由题意知,P(1,),A(-1,),B(3,),由OAOB得=-1,所以r2=4,所以r=2,P(1,),kOP=.12.解析 如图所示,圆C:(x+1)2+(y-2)2=2,圆心C(-1,2),半径r=,因为|PM|=|PO|,所以|PO|2+r2=|PC|2,所以+2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标为.13.x+y=0或x-y+4=0解析 若a=b=0,则直线l过点(0,0)与(-2,2),直线l的斜率k=-1,直线l的方程为y=-x,即x+y=0.若a0,b0,则直线l的方程为=1,由题意知解得此时,直线l的方程为x-y+4=0.综上,直线l的方程为x+y=0或x-y+4=0.14.2+2解析 设A(-a,a),B(b,0)(a,b0),则直线AB的方程是ax+(a+b)y-ab=0.因为要使直线AB与圆x2+y2=1相切,所以d=1,化简得2a2+b2+2ab=a2b2,利用基本不等式得a2b2=2a2+b2+2ab2ab+2ab,即ab2+2,从而得|AB|=ab2+2,当b=a,即a=,b=时,|AB|的最小值是2+2.15.解 (1)点M,N到直线l的距离相等,lMN或l过MN的中点(设其为点C).M(0,2),N(-2,0),直线MN的斜率kMN=1,MN的中点坐标为(-1,1).又直线l:kx-y-2k+2=0过定点(2,2)(设其为点D),当lMN时,k=kMN=1;当l过MN的中点时,k=kCD=.综上可知,k的值为1或.(2)对于l上任意一点P,MPN恒为锐角,l与以MN为直径的圆相离,即圆心(-1,1)到直线l的距离大于半径,d=,解得k1.16.解 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0y07,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线lOA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=.因为BC=OA=2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管改造建设方案范本
- 四川省巴中市普通高中2023级“零诊”考试历史试题(含答案)
- 幼儿园音乐游戏培训
- 客户管理岗年度工作总结
- 新教师培训常规培训
- 2026届江西省抚州市临川二中学、崇仁二中学化学九上期中经典试题含解析
- 荷尔蒙培训课件
- 培训父母的课件
- 改善改良制度培训
- 2026届广西壮族自治区防城港四校联考英语九上期末监测试题含解析
- 两篇古典英文版成语故事塞翁失马
- 第5、6讲 目击证人心理研究-法律心理学
- 产业经济学02产业组织理论
- 燃气轮机介绍课件
- 2023年南京江宁交通建设集团有限公司招聘笔试模拟试题及答案解析
- 立体构成技法--半立体构成课件
- 2022年国家公务员考试申论真题及答案解析(地市级)
- 冠心病围术期的护理25张课件
- YYT 1244-2014 体外诊断试剂用纯化水
- DB32-T 4063-2021建筑工程施工质量鉴定标准-(高清现行)
- 3养殖水环境及控制(1)ppt课件
评论
0/150
提交评论