




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 3 2简单的线性规划问题 学习目标 1 了解线性规划的意义 2 准确利用线性规划知识求解目标函数的最值 3 掌握线性规划在解决实际问题中的两种类型 课堂互动讲练 知能优化训练 3 3 2简单的线性规划问题 课前自主学案 课前自主学案 1 二元一次不等式ax by c 0 或 0或 0或 0 所表示的平面区域为直线ax by c 0的一侧 2 确定二元一次不等式 组 所表示的平面区域的基本方法是 直线定界 点定域 线性规划中的基本概念 一次 一次 思考感悟 1 在线性约束条件下 最优解唯一吗 提示 不一定 最优解可能有一个 也可能有多个 甚至可能有无数多个 2 在线性目标函数z x y中 目标函数z的最大 最小值与截距的对应关系是怎样的 提示 z的最大值对应于截距的最大值 z的最小值对应于截距的最小值 课堂互动讲练 求目标函数最值的一般步骤是 画 在直角坐标平面上画出可行域和直线ax by 0 目标函数为z ax by 移 平行移动直线ax by 0 确定使z ax by取得最大值或最小值的点 求 求出取得最大值或最小值的点的坐标 解方程组 及最大值和最小值 答 给出正确答案 思路点拨 解答本题可先画出可行域 再平移直线3x 4y 0 求最值 解析 作出可行域如图阴影部分所示 由图可知z 3x 4y经过点a时z有最小值 经过点b时z有最大值 易求a 3 5 b 5 3 z最大 3 5 4 3 3 z最小 3 3 4 5 11 答案 a 解答此类问题必须明确线性目标函数的最值一般在可行域的顶点或边界取得 运用数形结合的思想方法求解 同时 要注意边界直线斜率与目标函数斜率的关系 已知变量x y满足约束条件1 x y 4 2 x y 2 若目标函数z ax y 其中a 0 仅在点 3 1 处取得最大值 则a的取值范围为 思路点拨 画出可行域 根据题意 结合图形找出目标函数斜率与边界斜率间的关系 解析 由约束条件画出可行域 如图 点c的坐标为 3 1 z最大时 即平移y ax使直线在y轴上的截距最大 a kcd 即 a 1 a 1 答案 a 1 利用图解法解决线性规划实际问题 要注意合理利用表格 处理繁杂的数据 另一方面约束条件要注意实际问题的要求 如果要求整点 则用逐步平移法验证 2010年高考广东卷 某营养师要为某个儿童预订午餐和晚餐 已知1个单位的午餐含12个单位的碳水化合物 6个单位的蛋白质和6个单位的维生素c 1个单位的晚餐含8个单位的碳水化合物 6个单位的蛋白质和10个单位的维生素c 另外 该儿童这两餐需要的营养中至少含64个单位的碳水化合物 42个单位的蛋白质和54个单位的维生素c 如果1个单位的午餐 晚餐的费用分别是2 5元和4元 那么要满足上述的营养要求 并且花费最少 应当为该儿童分别预订多少个单位的午餐和晚餐 解 设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位 所花的费用为z元 则依题意 得z 2 5x 4y 且x y满足 让目标函数表示直线2 5x 4y z在可行域上平移 由此可知z 2 5x 4y在b 4 3 处取得最小值 因此 应当为该儿童预订4个单位的午餐和3个单位的晚餐 就可满足要求 名师点评 用图解法解线性规划应用题的具体步骤为 1 设元 并列出相应的约束条件和目标函数 2 作图 准确作图 平移找点 3 求解 代入求解 准确计算 4 检验 根据结果 检验反馈 变式训练2某公司计划2010年在甲 乙两个电视台做总时间不超过300分钟的广告 广告总费用不超过9万元 甲 乙电视台的广告收费标准分别为500元 分钟和200元 分钟 假定甲 乙两个电视台为该公司所做的每分钟广告 能给公司带来的收益分别为0 3万元和0 2万元 问该公司如何分配甲 乙两个电视台的广告时间 才能使公司的收益最大 最大收益是多少万元 作直线l 3000 x 2000y 0 即3x 2y 0 1 利用图解法解决线性规划问题的一般步骤 1 作出可行解 可行域 将约束条件中的每一个不等式当作等式 作出相应的直线 并确定原不等式表示的半平面 然后求出所有半平面的交集 2 作出目标函数的等值线 3 求出最终结果 在可行域内平行移动目标函数等值线 从图中能判定问题有唯一最优解 或者是有无穷最优解 或是无最优解 2 解答线性规划的实际应用问题时应注意 1 在线性规划问题的应用中 常常是题中的条件较多 因此认真审题非常重要 2 线性约束条件中有无等号要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TS 9651:2025 EN Nanotechnologies - Classification framework for graphene‐related 2D materials
- 校外实习安全知识培训课件
- 吸痰护理试题及答案
- 测井考试题及答案
- 校园安全知识培训课件模板
- 闽侯招聘面试题及答案
- 北京装修设计知识培训课件
- 中药科普试题及答案
- 北京美术色彩知识培训班课件
- 历年扶贫面试题及答案
- 2025年高考物理二轮复习:11个模块知识讲义
- 胖东来面试题及答案
- 海宁市食品农产品检验检测中心改建项目环评报告
- 土豆采购合同协议
- 幼儿托育服务与管理
- 2024版机电质量标准化管理图册
- 彩钢围挡施工方案范本
- 2025年广东湛江高三一模高考历史模拟试卷试题(含答案详解)
- 以工代赈道路建设项目可行性报告
- 2025年山东威海乳山市事业单位招聘带编入伍高校毕业生12人历年高频重点提升(共500题)附带答案详解
- 机电安装工程施工方案
评论
0/150
提交评论