数学北师大版一年级下册相交线与平行线(一).doc_第1页
数学北师大版一年级下册相交线与平行线(一).doc_第2页
数学北师大版一年级下册相交线与平行线(一).doc_第3页
数学北师大版一年级下册相交线与平行线(一).doc_第4页
数学北师大版一年级下册相交线与平行线(一).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章 相交线与平行线 2、1两条直线的位置关系(一)教学设计 马街中学 周应秀 课时安排说明:两条直线的位置关系共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、 学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。二、 教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。教学目标 1知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。2过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。3情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。二、教学重难点 学习重点:了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。 学习难点:学生探索等角的余角相等、等角的补角相等、对顶角相等的过程以及对其意义的理解,并能解决一些实际问题。初步的“说理”也是难点之一、三、教学过程设计本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。教学过程 (一)复习回顾1、 直线的表示方法2、 角的表示方法设计目的:在初一上册就对直线和角有了一些认识,通过复习回顾能让学生更容易进入本节课。(2) 引入新课1 教师展示下列图片,学生快速回答:2.13mnab 2.11 2.12 问题1:在2.11中,直线m和n 的关系是 ;a和b是 ;a和n是 。总结:1、在同一平面内,两条直线的位置关系有 和 .2、相交线:如图1,只有一个公共点的两条直线叫做 ,这个公共点叫做 . 3、平行线:如图2,在同一平面内, 叫做平行线。 如图1 如图2,设计目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。4、 对顶角.2.1512342.142.16 问题1:观察2.14:1和2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。问题2:剪子可以看成图2.14,那么剪子在剪东西的过程中,1和2还保持相等吗?3和4呢?你有何结论?总结:(1)概念有公共 的两个角,如果它们的两边互为 ,这样的两个角就叫做对顶角。例如:,都是对顶角. (2)性质对顶角 。如右图:, 对应练习1)下列各图中,1和2是对顶角的是( ) 2) 如图2,直线a,b相交,1=40O ,4=140O,则3= 4= . 设计目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验。设置问题1和问题2的目的是通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。同时进一步培养学生抽象几何图形进行建模的能力。而后面的练习则能进一步加深学生对对顶角和对顶角性质的认识。5、余角与补角(1)概念如果两个角的和是 ,那么称这两个角互为余角;符号语言:如图1:若1+2= 90o , 那么1与2互余。如果两个角的和是 ,那么称这两个角互为补角。符号语言:如图2:若3+4=180o , 那么3与4互补。对应练习:填表:一个角这个角的余角这个角的补角设计目的:通过给学生让学生自己预习,找出什么是补角和余角的定义,教师在进一步用几何语言表达出来,能培养学生的几何思维,后面表格的设计是为了充分理解和应用。(3) 性质:打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时1=2,将图2.17抽象成图2.18,ON与DC交于点O,DON=CON=900,1=22.172.18小组合作交流,解决下列问题:在图2.18中问题1:哪些角互为补角?哪些角互为余角?问题2:3与4有什么关系?为什么?问题3:AOC与BOD有什么关系?为什么?你还能得到哪些结论?同角或等角的余角 ; = . = 理由: . 理由: .同角或等角的补角_; = . = 理由: . 理由: .对应练习:(1)若A+B=,B+C=,则A_C,理由是 .(2)若1+3=,2+4=,且1=2,则3_4,理由是 设计目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。”“同角或者等角的余角相等。”并能够用自己的语言说出简单推理。(3) 归纳总结1、你学到了哪些知识点?2、你学到了哪些方法?3、你还有哪些困惑(4) 作业布置1、书P40页习题2.1 第 1,2,3,4,5题2、优佳学案设计目的:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了同一图形经过不同变化可以产生不同问题,与课堂的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论