小学数论试卷_第1页
小学数论试卷_第2页
小学数论试卷_第3页
小学数论试卷_第4页
小学数论试卷_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数论训练试题一填空题(共12小题)1(2008宁乡县)大于1的三个连续自然数中,一定有一个是3的倍数,至少有一个是偶数_2(2004广州)小明与十多个小朋友围成一圈,如果依次按顺时针方向l,2.3,1,2,3,报数,小明第一次是报1,第二次还是报1;如果依次按逆时针方向1,2,3,4,1,2,3,4,报数,小明第一次报1,第二次报数是还是报1那么包括小明在内,共有_个小朋友3将一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,得到的和恰好是某个自然数的平方,这个和是_4100以内所有被5除余1的自然数的和是_5、这五个数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300那么,这五个数中从小到大排列依次是_6(2002上海)一个两位数,若是一个奇数,则称这个两位数为“好数”,两位“好数”共有_个7某个质数与6、8、12、14之和都仍然是质数,一共有_个满足上述条件的质数8两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数,得到2个商的和是16,这两个整数分别是_和_9已知一个五位数能被 72整除,则这个五位数是_10如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是_11(2005广州)有一类自然数,各个数位上数字之和为2008,这类自然数中最小的一个是_位数,最高位上的数字是_12如果仅用奇数数码组成的所有可能的三位数,那么这些三位数的和是_一解答题(共6小题)13(2007南岗区)已知三个质数P1P2P3,且P12+P22+P32=2238,求这三个质数14将2008写成3个不同的质数之和,其中最大的质数的最大可能值是多少?15求小于1001且与1001互质的所有自然数的和16的乘积中,各位数字的和是多少?17求从12000的自然数中,所有偶数之和与所有奇数之和的差18四个连续奇数的和一定是8的倍数吗?为什么?参考答案与试题解析一解答题(共18小题)1(2008宁乡县)大于1的三个连续自然数中,一定有一个是3的倍数,至少有一个是偶数正确考点:数字问题2212511专题:数的整除分析:由于自然数中3的倍数为3,6,9,即每两个3的倍数之间相隔两个数,大于1的三个连续自然数中,一定有一个是3的倍数;自然数中每相邻的两个自然数相差1,设这三个连续的自然数中第一个数为x,则第二个数为x+1,第三个数为x+2,如果为x为偶数,根据数和的奇偶性可知,x+2也为偶数,即这三个数中有两个偶数,如果x为奇数,则x+1为偶数,x+2为奇数,即三个数中只有一个偶数所以大于1的三个连续自然数中,至少有一个是偶数解答:解:由于每两个3的倍数之间相隔两个数,大于1的三个连续自然数中,一定有一个是3的倍数;自然数中每相邻的两个自然数相差1,设这三个连续的自然数中第一个数为x,则第二个数为x+1,第三个数为x+2,如果为x为偶数,则x+2也为偶数,即这三个数中有两个偶数,如果x为奇数,则x+1为偶数,x+2为奇数,即三个数中只有一个偶数则大于1的三个连续自然数中,至少有一个是偶数所以,于1的三个连续自然数中,一定有一个是3的倍数,至少有一个是偶数说法正确点评:根据自然数的排列规律及数和的奇偶性进行分析是完成此类问题的关键2(2004广州)小明与十多个小朋友围成一圈,如果依次按顺时针方向l,2.3,1,2,3,报数,小明第一次是报1,第二次还是报1;如果依次按逆时针方向1,2,3,4,1,2,3,4,报数,小明第一次报1,第二次报数是还是报1那么包括小明在内,共有12个小朋友考点:数字问题2212511分析:顺时针报数时,每3人一组,小明两次都是报1,说明人数是3的倍数;逆时针报数时,每4人一组,小明两次都是报1,说明人数是4的倍数即这个数3、4的公倍数,又只有十多个小朋友,1020只间,只有12是3、4的公倍数,所以连小明在内共有12个小朋友解答:解:据题意可知,总人数是数3、4的公倍数,又只有十多个小朋友,1020只间,只有12是3、4的公倍数,所以连小明在内共有12个小朋友故答案为:12点评:完成本题的关健是通过分析题意得出这个数是3、4的公倍数3将一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,得到的和恰好是某个自然数的平方,这个和是121考点:数字问题2212511分析:设这个数的个位数为b,十位数为a,则这个数为10a+b,个位数与十位数交换后为:10b+a,两数的和为:10a+b+10b+a=11(a+b),则两数的和为11的倍数,得到的和恰好是某个自然数的平方,所以它们的和是1111=121解答:解:把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和一定是11的倍数,所以,它们的和是1111=121,这个数的两个数字之和是11,这个数是29,92,38,83,47,74,65或者56故答案为:121点评:任意一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和一定是11的倍数4100以内所有被5除余1的自然数的和是970考点:数字问题2212511专题:综合填空题分析:100以内所有被5除余1的自然数为1,6,11,96,这些数构成一个公差为5的等差数列,由此根据高斯求和公式即能求出它们的和是多少解答:解;100以内所有被5除余1的自然数成一个公差为5的等差数列:即1,6,11,96,它们的和为:1+6+11+96=(1+96)(961)5+12=97202,=970故答案为:970点评:自然数中所有被n(n为不零的自然数)除余1的自然数构成一个公差为n的等差数列5a、b、c、d、e这五个数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300那么,这五个数中从小到大排列依次是1、3、6、15、20考点:数字问题2212511分析:设abcde,那么最小的两个积为:ab=3,ac=6,最大的两个积为:ce=120,de=300,根据这四个算式找出这几个数之间的倍数关系,都用b代替由此解决问题解答:解:设abcde,则:ab=3,a=;ac=6,c=6,c=2b;ce=120,2be=120,e=;de=300d=300e=300=5b;那么这五个数就可以表示为:,b,2b,5b,经验证b=3时符合题意,所以,这五个数从小到大排列依次是:1,3,6,15,20,点评:用一个数来代替其它数,然后根据它们的乘积求出这个数与其它数的倍数关系是完成本题的关键6(2002上海)一个两位数,若a+ab是一个奇数,则称这个两位数为“好数”,两位“好数”共有25个考点:奇偶性问题2212511分析:由于偶数+奇数=奇数,偶数奇数=偶数,所以a+ab是一个奇数,则a一定是奇数,b一定是偶数,09共有5个奇数,5个偶数,根据乘法原理,两位好数共有55=25个解答:解:由于a+ab是一个奇数,所以a一定是个奇数,若a是偶数,则a+ab一定是个偶数,与题设矛盾;b一定是个偶数,若b是个奇数,则a+ab=奇数+奇数奇数=奇数+奇数=偶数,与题设矛盾;09共有5个奇数,5个偶数,所以,两位“好数”共有:55=25个故答案为:25点评:根据已知条件及数的奇偶性确定a、b两数的奇偶性是完成本题的关键7某个质数与6、8、12、14之和都仍然是质数,一共有1个满足上述条件的质数考点:质数与合数问题2212511分析:个位数的质数是2、3、5、7、9,大于10的质数的个位数一个不是0、2或5,是1、3、7或9;由于6、8、12、14是偶数,则这个质数的个位数一定为奇数,即为1,3,5,7,9然后将它们分别与6、8、12、14相加进行验证排除即可解答:解:6,8,12,14都是偶数,加上唯一的偶数质数2和仍然是偶数,所以不是214加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除12加上任何尾数是3的质数,尾数也是5;8加上任何尾数是7的质数,尾数也是5;6加上任何尾数是9的质数,尾数也是5 所以,这个质数的末位一定不是1,3,7,95加上6、8、12、14中任意一个数的末位数都不是5,而末位数是5的质数中,只有5是质数,因此,只有5能满足条件,即一共有1个满足上述条件的质数故答案为:1点评:明确除2和5以外质数的个位都是1,3,7,9,大于10的个位数是5数一定不是质数这两个规律是完成本题的关键8两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数,得到2个商的和是16,这两个整数分别是175和385考点:公约数与公倍数问题2212511分析:因为1925=55711,由于商的和是16,看约数情况,这里只能是11+5=16;所以2个商应该是11和5,所以这两个数应该是575和5711;这样除以最大公约数57就剩下5和11;所以这两个数就是575=175和5711=385解答:解:1925=55711,11+5=16;所以2个商应该是11和5;575=175,5711=385;答:这两个整数分别是175和385;故答案为:175,385点评:此题解题的关键是先把1925进行分解质因数,然后结合题意,进而得出所需数字,然后根据公约数的知识进行分析解答即可9已知一个五位数能被 72整除,则这个五位数是13752考点:数的整除特征2212511分析:72=89,五位数一定能被8、9同时整除,根据能被8、9整除的数的特征解答即可解答:解:一个数的百位、十位、个位组成的三位数能被8整除这个数就能被8整除,75b能被8整除,只有b=2;所以个位上的数应该是2,一个数各位上的数字之和能被9整除这个数就能被9整除,1+a+7+5+2能被9整除,只有a=3;所以,千位上的数应该是3,故答案为:13752点评:该题主要考查利用数的整除特征一步步求得结论10如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是961考点:约数个数与约数和定理2212511分析:自然数的因数都是成对出现的,比如1和本身是一对,出现奇数个因数的时候是因为其中有一对的因数是相等的,那么这个自然数是完全平方数所以只有完全平方数的约数个数才是奇数,则这道题就变成了求“1000以内最大的完全平方数是多少”,312=961,322=1024,由此即可得出1000以内最大的完全平方数,从而解决问题解答:解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961故答案为:961点评:这道题主要考查的知识点是完全平方数的约数个数是奇数这一特点的灵活应用11(2005广州)有一类自然数,各个数位上数字之和为2008,这类自然数中最小的一个是1999(223个9)位数,最高位上的数字是1考点:数字和问题2212511分析:首先我们应该知道:若要使一个自然数尽可能的小,一是它的数位要尽可能的少,另一个是从最高位起,每一位上的数字要尽可能的小因为20089=2231,所以若要使所求的自然数尽可能的小,它的最高位必须是1,其它数位上都是9(共223个9)这类自然数中最小的一个是:1999(223个9)解答:解:20089=2231,这类自然数中最小的一个是:1999(223个9);最高位上的数字是:1故答案为:1999(223个9),1点评:解答此题要明白使一个自然数尽可能小的办法:它的数位要尽可能的少;从最高位起,每一位上的数字要尽可能的小12如果仅用奇数数码组成的所有可能的三位数,那么这些三位数的和是69375考点:数字和问题2212511分析:09的奇数码为1,3,5,7,9共5个;用这些组成的所有可能的三位数共有555=125个将这些数相加,则每个数字分别在百位、十位、个数被加了1255=25次根据数位知识可知,这些三位数的和是:(1+3+5+7+9)(100+10+1)5555解答:解:(1+3+5+7+9)(100+10+1)5555=2511125,=69375;故答案为:69375点评:在计算奇数数码组成的所有可能的三位数时,要注意组成三位数的数字是可以重复的13(2007南岗区)已知三个质数P1P2P3,且P12+P22+P32=2238,求这三个质数考点:质数与合数问题2212511分析:奇数的平方数为奇数,偶数的平方数为偶数,偶数+偶数=偶数,奇数+奇数=偶数,三数之和为2238,那么必能知道其中至少一个为偶数,即2238=偶数+奇数+奇数,偶数为质数的只有2,那么其中必有一个质数为2,为P1,所以4+=2238,+=2234,接下来我们从质数的平方数小于2234的开始找,小于2234的质数平方数最大的一个为47的平方,2209,那么有 =22342209=25,恰好为5的平方数,而且5恰好为一个质数,所以 p1=2,p2=5,p3=47解答:解:由于三数之和为2238为偶数,则三个质数中必有一个质数为2,定为P1;22+=2238,即,+=2234;由此可从质数的平方数小于2234的质数开始进行验证,小于2234的质数平方数最大的一个为47的平方是2209,那么有 =22342209=25,恰好为5的平方数,而且5恰好为一个质数,所以 p1=2,p2=5,p3=47答:这三个质数分别为2,5,47点评:根据数和的奇偶性确定其中一个质数必为2是完成本题的关键14将2008写成3个不同的质数之和,其中最大的质数的最大可能值是多少?考点:质数与合数问题;奇偶性问题2212511分析:要使其中的一个质数尽量大,就要使其它另两个质数尽量小,因此可从最小的质数进行验证,最小的两个质数为2,3;200823=2003,2003也为质数解答:解:最小的两个质数为2,3;200823=2003,2003也为质数,即3+2+2003=2008所以,将2008写成3个不同的质数之和,其中最大的质数的最大可能值是2003点评:由于本题的取值范围较小,所以通过验证法进行解答比较简单15求小于1001且与1001互质的所有自然数的和考点:质数与合数问题2212511分析:小于1001的数共有1000个,因为1001=71113,所以与1001互质的数绝不是7,11,13的倍数将小于1001的7,11,13的倍数求出来,由此即可解决解答:解:1001=71113,小于1001的数中,7的倍数有142个,(1+2+3+142)7=143717=710710,11的倍数有91个,(1+2+3+90)11=914511=45045,13的倍数有77个,(1+2+3+76)13=773813=38038,71071+45045+38038=154154,7和11的公倍数有12个,(1+2+3+12)77=7877=6006,7和13的公倍数有10个,(1+2+3+10)91=5591=5005,11和13的公倍数有6个,(1+2+6)143=21143=3003,6006+5005+3003=14014,1001到1中间有1000个数字的总和是:1+2+3+4+5+6+999+1000=(1+1000)10002=500500,500500154154+14014=360360,答:小于1001且与1001互质的所有自然数的和是360360点评:7和11的公倍数,7和13的公倍数,11和13的公倍数在7的倍数,11的倍数,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论