从梯子的倾斜程度谈起 教案_第1页
从梯子的倾斜程度谈起 教案_第2页
从梯子的倾斜程度谈起 教案_第3页
从梯子的倾斜程度谈起 教案_第4页
从梯子的倾斜程度谈起 教案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

从梯子的倾斜程度谈起 教案 1.1从梯子的倾斜程度谈起 (一)教学目标 (一)教学知识点1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. (二)能力训练要求1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.3.体会解决问题的策略的多样性,发展实践能力和创新精神. (三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点理解正切的意义,并用它来表示两边的比.教学方法引导探索法.教具准备FLASH演示教学过程1.创设问题情境,引入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现问题1在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?1问题2随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.这节课,我们就先从梯子的倾斜程度谈起.(板书课题1.1.1从梯子的倾斜程度谈起).讲授新课用多媒体演示如下内容师梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示) (1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?2生梯子AB比梯子EF更陡.师你是如何判断的?生从图中很容易发现ABCEFD,所以梯子AB比梯子EF陡.生我觉得是因为ACED,所以只要比较BC、FD的长度即可知哪个梯子陡.BC (2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?师我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第 (1)问中得到什么启示呢?生在第 (1)问的图形中梯子的垂直高度即AC和ED是相等的,而水平宽度BC和FD不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.师这位同学的想法很好,的确如此,在第 (2)问的图中,哪个梯子更陡,应该从梯子AB和EF的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB和EF哪一个更陡呢?3AC48?,BC1.53ED3.535?.FD1.313835?,313生梯子EF比梯子AB更陡.多媒体演示想一想如图,小明想通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗? (1)直角三角形AB1C1和直角三角形AB2C2有什么关系? (2)B1C1B C和22和有什么关系?AC1AC2 (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?师我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.生在上图中,我们可以知道RtAB1C1,和RtAB2C2是相似的.因为B2C2AB1C1A90,B2AC2B1AC1,根据相似的条件,得RtAB1C1RtAB2C2.生由图还可知B2C2AC2,B1C1AC1,得B2C2/B1C1,RtAB1C1RtAB2C2.生相似三角形的对应边成比例,得4B1C1AC1B CB C?,即11?22.B2C2A C2A1C1AC2如果改变B2在梯子上的位置,总可以得到RtB2C2ARtRtB1C1A,仍能得到B1C1B2C2B CB C因此,无论B2在梯子的什么位置(除A外),11?22总成?AC1AC2AC1AC2立.师也就是说无论B2在梯子的什么位置(A除外),A的对边与邻边的比值是不会改变的.现在如果改变A的大小,A的对边与邻边的比值会改变吗?生A的大小改变,A的对边与邻边的比值会改变.师你又能得出什么结论呢?生A的对边与邻边的比只与A的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.师这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?生小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1、B2在梯子上的位置无关,即与直角三角形的大小无关.生但我觉得小亮的做法更实际,因为要测量B1C1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.师这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义(多媒体演示)如图,在RtABC中,如果锐角A确定,那么A的对边与邻边之比便随之确5定,这个比叫做A的正切(tangent),记作tanA,即tanA=?A的对边.?A的邻边注意1.tanA是一个完整的符号,它表示A的正切,记号里习惯省去角的符号“”.2.tanA没有单位,它表示一个比值,即直角三角形中A的对边与邻边的比.3.tanA不表示“tan”乘以“A”.4.初中阶段,我们只学习直角三角形中,A是锐角的正切.思考1.B的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,课本图13,梯子的倾斜程度与tanA有关系吗?生1.B的正切记作tanB,表示B的对边与邻边的比值,即tanB=?B的对边.?B的邻边2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图13中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.师正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡的坡度、堤坝的坡度.6如图,有一山坡在水平方向上每前进100m,就升高60m,那么山坡的坡度(即坡角的正切tan就是tan=603?.1005这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.例题讲解多媒体演示例1如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析比较甲、乙两个自动电梯哪一个陡,只需分别求出tan、tan的值,比较大小,越大,扶梯就越陡.解甲梯中,tan=?的对边55?.?的邻边12132?52乙梯中tan=?的对边63?.?的邻边84因为tantan,所以乙梯更陡.例2在ABC中,C=90,BC=12cm,AB=20cm,求tanA和tanB的值.分析要求tanA,tanB的值,根据勾股定理先求出直角边AC的长度.解在ABC中,C90,7所以AC=16(cm),tanA=AB2?BC2?202?122?A的对边BC123?,?A的邻边AC164?B的对边AC164?.?B的邻边BC12334,tanB=.43tanB=所以tanA=,随堂练习1.如图,ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?分析要求tanC.需从图中找到C所在的直角三角形,因为BDAC,所以C在RtBDC中.然后求出C的对边与邻边的比,即解ABC是等腰直角三角形,BDAC,BD的值.DC11AC31.5.22BD1.5在RtBDC中,tanC=1.DC1.5CD2.如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)分析由图可知,A是坡角,A的正切即tanA为山的坡度.解根据题意在RtABC中,AB=200m,BC55m,8AC=xx?552?51479?5?38.46=192.30(m).TanA=BC55?0.286.AC192.30所以山的坡度为0.286.课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“Rt”中定义了tanA?A的对边.?A的邻边接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的一个很重要的概念.课后作业1.习题1.1第 1、2题.2.观察学校及附近商场的楼梯,哪个更陡.活动与探究(xx年江苏盐城)如图,RtABC是一防洪堤背水坡的横截面图,斜坡AB的长为12m,它的坡角为45,为了提高该堤的防洪能力,现将背水坡改造成坡比为11.5的斜坡AD,求DB的长.(结果保留根号)过程要求DB的长,需分别在RtABC和RtACD中求出BC和DC.根据题意,在RtABC中,ABC=45,AB12m,则可根据勾股定理求出BC;在RtADC中,坡比为11.5,即tanD=11.5,由BCAC,可求出CD.结果根据题意,在RtABC中,ABC=45,所以ABC为等腰直角三角形.设BC=ACxm,则9x+x12,x=62,所以BCAC=62.在RtADC中,tanD=222AC1?,CD1.5即621CD=92.?CD1.5所以DBCD-BC92-62=32(m).板书设计1.1.1从梯子的倾斜程度谈起 (一)1.当直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定.2.正切的定义在RtABC中,锐角A确定,那么A的对边与邻边的比随之确定,这个比叫做A的正切,记作tanA,即tanA?A的对边.?A的邻边注 (1)tanA的值越大.梯子越陡. (2)坡度通常表示斜坡的倾斜程度,是坡角的正切.坡度越大,坡面越陡.3.例题讲解(略)4.随堂练习5.课时小结备课资料例1(xx年浙江沼兴)若某人沿坡度i34的斜坡前进10米,则他所在的位置比原来的位置升高_米.分析根据题意(如图)在RtABC10中ACBC34,AB10米

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论